Sang Hoon Lee, Kwang-Yul Kim, Jae Hyun Kim, Y. Shin
{"title":"基于DNN算法的有效特征自动调制分类方法","authors":"Sang Hoon Lee, Kwang-Yul Kim, Jae Hyun Kim, Y. Shin","doi":"10.1109/ICAIIC.2019.8669036","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective feature-based automatic modulation classification (AMC) method using a deep neural network (DNN). In order to classify the modulation type, we consider effective features according to the modulation signals. The proposed method removes the meaningless features that have little influence on the classification and only uses the effective features that have high influence by analyzing the correlation coefficients. From the simulation results, we observe that the proposed method can make the AMC system low complexity.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effective Feature-Based Automatic Modulation Classification Method Using DNN Algorithm\",\"authors\":\"Sang Hoon Lee, Kwang-Yul Kim, Jae Hyun Kim, Y. Shin\",\"doi\":\"10.1109/ICAIIC.2019.8669036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective feature-based automatic modulation classification (AMC) method using a deep neural network (DNN). In order to classify the modulation type, we consider effective features according to the modulation signals. The proposed method removes the meaningless features that have little influence on the classification and only uses the effective features that have high influence by analyzing the correlation coefficients. From the simulation results, we observe that the proposed method can make the AMC system low complexity.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective Feature-Based Automatic Modulation Classification Method Using DNN Algorithm
In this paper, we propose an effective feature-based automatic modulation classification (AMC) method using a deep neural network (DNN). In order to classify the modulation type, we consider effective features according to the modulation signals. The proposed method removes the meaningless features that have little influence on the classification and only uses the effective features that have high influence by analyzing the correlation coefficients. From the simulation results, we observe that the proposed method can make the AMC system low complexity.