基于网格照明建模的基于提升的照明自适应变换(LIAT)

Maryam Haghighat, R. Mathew, A. Naman, D. Taubman
{"title":"基于网格照明建模的基于提升的照明自适应变换(LIAT)","authors":"Maryam Haghighat, R. Mathew, A. Naman, D. Taubman","doi":"10.1109/ICIP.2017.8296834","DOIUrl":null,"url":null,"abstract":"State-of-the-art video coding techniques employ block-based illumination compensation to improve coding efficiency. In this work, we propose a Lifting-based Illumination Adaptive Transform (LIAT) to exploit temporal redundancy among frames that have illumination variations, such as the frames of low frame rate video or multi-view video. LIAT employs a mesh-based spatially affine model to represent illumination variations between two frames. In LIAT, transformed frames are jointly compressed, together with illumination information, into a layered rate-distortion optimal codestream, using the JPEG2000 format. We show that the LIAT framework significantly improves compression efficiency of temporal subband transforms for both predictive and more general transforms with predict and update steps.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lifting-based Illumination Adaptive Transform (LIAT) using mesh-based illumination modelling\",\"authors\":\"Maryam Haghighat, R. Mathew, A. Naman, D. Taubman\",\"doi\":\"10.1109/ICIP.2017.8296834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art video coding techniques employ block-based illumination compensation to improve coding efficiency. In this work, we propose a Lifting-based Illumination Adaptive Transform (LIAT) to exploit temporal redundancy among frames that have illumination variations, such as the frames of low frame rate video or multi-view video. LIAT employs a mesh-based spatially affine model to represent illumination variations between two frames. In LIAT, transformed frames are jointly compressed, together with illumination information, into a layered rate-distortion optimal codestream, using the JPEG2000 format. We show that the LIAT framework significantly improves compression efficiency of temporal subband transforms for both predictive and more general transforms with predict and update steps.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最新的视频编码技术采用基于块的照明补偿来提高编码效率。在这项工作中,我们提出了一种基于提升的照明自适应变换(LIAT)来利用具有照明变化的帧之间的时间冗余,例如低帧率视频或多视图视频的帧。LIAT采用基于网格的空间仿射模型来表示两帧之间的光照变化。在LIAT中,转换后的帧与照明信息一起使用JPEG2000格式被压缩成分层的率失真最优码流。我们表明,LIAT框架显著提高了时间子带变换的压缩效率,无论是预测还是更一般的具有预测和更新步骤的变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifting-based Illumination Adaptive Transform (LIAT) using mesh-based illumination modelling
State-of-the-art video coding techniques employ block-based illumination compensation to improve coding efficiency. In this work, we propose a Lifting-based Illumination Adaptive Transform (LIAT) to exploit temporal redundancy among frames that have illumination variations, such as the frames of low frame rate video or multi-view video. LIAT employs a mesh-based spatially affine model to represent illumination variations between two frames. In LIAT, transformed frames are jointly compressed, together with illumination information, into a layered rate-distortion optimal codestream, using the JPEG2000 format. We show that the LIAT framework significantly improves compression efficiency of temporal subband transforms for both predictive and more general transforms with predict and update steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信