使用任意时间方法检测任意数据流上的异常值

I. Assent, P. Kranen, C. Baldauf, T. Seidl
{"title":"使用任意时间方法检测任意数据流上的异常值","authors":"I. Assent, P. Kranen, C. Baldauf, T. Seidl","doi":"10.1145/1833280.1833282","DOIUrl":null,"url":null,"abstract":"Data streams are gaining importance in many sensoring and monitoring environments. Frequent mining tasks on data streams include classification, modeling and outlier detection. Since often the data arrival rates vary, anytime algorithms have been proposed for stream clustering and classification, which can deliver a fast first result and improve their result if more time is available. In this work, we propose the novel concept of anytime outlier detection and introduce an algorithm for anytime outlier detection based on a hierarchical cluster representation. We show promising results in preliminary experiments and discuss future research for anytime outlier detection.","PeriodicalId":383372,"journal":{"name":"StreamKDD '10","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Detecting outliers on arbitrary data streams using anytime approaches\",\"authors\":\"I. Assent, P. Kranen, C. Baldauf, T. Seidl\",\"doi\":\"10.1145/1833280.1833282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data streams are gaining importance in many sensoring and monitoring environments. Frequent mining tasks on data streams include classification, modeling and outlier detection. Since often the data arrival rates vary, anytime algorithms have been proposed for stream clustering and classification, which can deliver a fast first result and improve their result if more time is available. In this work, we propose the novel concept of anytime outlier detection and introduce an algorithm for anytime outlier detection based on a hierarchical cluster representation. We show promising results in preliminary experiments and discuss future research for anytime outlier detection.\",\"PeriodicalId\":383372,\"journal\":{\"name\":\"StreamKDD '10\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"StreamKDD '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1833280.1833282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"StreamKDD '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1833280.1833282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

数据流在许多传感和监测环境中变得越来越重要。数据流上常见的挖掘任务包括分类、建模和异常点检测。由于数据到达率经常变化,因此提出了用于流聚类和分类的任何时间算法,这些算法可以提供快速的第一个结果,并且如果有更多的时间可用,则可以改进结果。在这项工作中,我们提出了随时离群点检测的新概念,并引入了一种基于分层聚类表示的随时离群点检测算法。我们在初步实验中展示了有希望的结果,并讨论了随时异常值检测的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting outliers on arbitrary data streams using anytime approaches
Data streams are gaining importance in many sensoring and monitoring environments. Frequent mining tasks on data streams include classification, modeling and outlier detection. Since often the data arrival rates vary, anytime algorithms have been proposed for stream clustering and classification, which can deliver a fast first result and improve their result if more time is available. In this work, we propose the novel concept of anytime outlier detection and introduce an algorithm for anytime outlier detection based on a hierarchical cluster representation. We show promising results in preliminary experiments and discuss future research for anytime outlier detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信