基于显著性引导的浅卷积神经网络交通标志检索

Xi Liang, Jing Zhang, Q. Tian, Jiafeng Li, L. Zhuo
{"title":"基于显著性引导的浅卷积神经网络交通标志检索","authors":"Xi Liang, Jing Zhang, Q. Tian, Jiafeng Li, L. Zhuo","doi":"10.1109/MIPR.2018.00076","DOIUrl":null,"url":null,"abstract":"As one of the important parts of road infrastructure, traffic signs provide vital information for road users. Achieving efficient traffic signs retrieval greatly contributes to the intelligent analysis on big traffic data. In this paper, we propose a saliency guided shallow convolutional neural network (CNN) for traffic signs accurate and fast retrieval. Firstly, by unifying deep saliency and hashing learning in a single architecture, the proposed CNN model performs joint learning in a point-wise manner, which is scalable on large-scale datasets. Then, deep saliency features and hashing-like outputs are extracted from traffic sign images with the saliency guided shallow CNN. The binarized hashing-like outputs together with saliency features are used to construct features database. Finally, a coarse to fine similarity measurement is performed by Euclidean distance and Hamming distance to return retrieval results. Experimental results demonstrate the retrieval accuracy of our method outperforms five state-of-the-art methods on GTSRB dataset.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"494 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Saliency Guided Shallow Convolutional Neural Network for Traffic Signs Retrieval\",\"authors\":\"Xi Liang, Jing Zhang, Q. Tian, Jiafeng Li, L. Zhuo\",\"doi\":\"10.1109/MIPR.2018.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the important parts of road infrastructure, traffic signs provide vital information for road users. Achieving efficient traffic signs retrieval greatly contributes to the intelligent analysis on big traffic data. In this paper, we propose a saliency guided shallow convolutional neural network (CNN) for traffic signs accurate and fast retrieval. Firstly, by unifying deep saliency and hashing learning in a single architecture, the proposed CNN model performs joint learning in a point-wise manner, which is scalable on large-scale datasets. Then, deep saliency features and hashing-like outputs are extracted from traffic sign images with the saliency guided shallow CNN. The binarized hashing-like outputs together with saliency features are used to construct features database. Finally, a coarse to fine similarity measurement is performed by Euclidean distance and Hamming distance to return retrieval results. Experimental results demonstrate the retrieval accuracy of our method outperforms five state-of-the-art methods on GTSRB dataset.\",\"PeriodicalId\":320000,\"journal\":{\"name\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"494 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR.2018.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

交通标志作为道路基础设施的重要组成部分,为道路使用者提供了重要的信息。实现高效的交通标志检索,对交通大数据的智能化分析具有重要意义。本文提出了一种基于显著性引导的浅卷积神经网络(CNN),用于交通标志的准确快速检索。首先,通过在单一架构中统一深度显著性和哈希学习,本文提出的CNN模型以逐点的方式进行联合学习,在大规模数据集上具有可扩展性。然后,利用显著性引导的浅CNN从交通标志图像中提取深度显著性特征和类哈希输出。将二值化的类哈希输出与显著性特征一起构建特征数据库。最后,利用欧几里得距离和汉明距离进行从粗到细的相似性度量,返回检索结果。实验结果表明,该方法在GTSRB数据集上的检索精度优于五种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Saliency Guided Shallow Convolutional Neural Network for Traffic Signs Retrieval
As one of the important parts of road infrastructure, traffic signs provide vital information for road users. Achieving efficient traffic signs retrieval greatly contributes to the intelligent analysis on big traffic data. In this paper, we propose a saliency guided shallow convolutional neural network (CNN) for traffic signs accurate and fast retrieval. Firstly, by unifying deep saliency and hashing learning in a single architecture, the proposed CNN model performs joint learning in a point-wise manner, which is scalable on large-scale datasets. Then, deep saliency features and hashing-like outputs are extracted from traffic sign images with the saliency guided shallow CNN. The binarized hashing-like outputs together with saliency features are used to construct features database. Finally, a coarse to fine similarity measurement is performed by Euclidean distance and Hamming distance to return retrieval results. Experimental results demonstrate the retrieval accuracy of our method outperforms five state-of-the-art methods on GTSRB dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信