{"title":"改进的z-buffer CSG渲染算法","authors":"Nigel Stewart, G. Leach, S. John","doi":"10.1145/285305.285308","DOIUrl":null,"url":null,"abstract":"We present an improved z-buffer based CSG rendering algorithm, based on previous techniques using z-buffer parity based surface clipping. We show that while this type of algorithm has been reported as requiring O( ), (where is the number of primitives), an O( ) (where is depth complexity) algorithm may be substituted. For cases where is less than this translates into a significant performance gain. CR Categories: I.3.5 [Computing Methodologies]: Computer Graphics—Constructive solid geometry (CSG) I.3.3 [Computing Methodologies]: Computer Graphics—Display Algorithms I.3.1 [Computing Methodologies]: Computer Graphics—Hardware Architecture","PeriodicalId":298241,"journal":{"name":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"An improved z-buffer CSG rendering algorithm\",\"authors\":\"Nigel Stewart, G. Leach, S. John\",\"doi\":\"10.1145/285305.285308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an improved z-buffer based CSG rendering algorithm, based on previous techniques using z-buffer parity based surface clipping. We show that while this type of algorithm has been reported as requiring O( ), (where is the number of primitives), an O( ) (where is depth complexity) algorithm may be substituted. For cases where is less than this translates into a significant performance gain. CR Categories: I.3.5 [Computing Methodologies]: Computer Graphics—Constructive solid geometry (CSG) I.3.3 [Computing Methodologies]: Computer Graphics—Display Algorithms I.3.1 [Computing Methodologies]: Computer Graphics—Hardware Architecture\",\"PeriodicalId\":298241,\"journal\":{\"name\":\"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/285305.285308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/285305.285308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present an improved z-buffer based CSG rendering algorithm, based on previous techniques using z-buffer parity based surface clipping. We show that while this type of algorithm has been reported as requiring O( ), (where is the number of primitives), an O( ) (where is depth complexity) algorithm may be substituted. For cases where is less than this translates into a significant performance gain. CR Categories: I.3.5 [Computing Methodologies]: Computer Graphics—Constructive solid geometry (CSG) I.3.3 [Computing Methodologies]: Computer Graphics—Display Algorithms I.3.1 [Computing Methodologies]: Computer Graphics—Hardware Architecture