间接上下文建议

Yong Zheng
{"title":"间接上下文建议","authors":"Yong Zheng","doi":"10.1145/3079628.3079654","DOIUrl":null,"url":null,"abstract":"Context suggestion refers to the task of recommending appropriate contexts to the users to improve the user experience. The suggested contexts could be time, location, companion, category, and so forth. In this paper, we particularly focus on the task of suggesting appropriate contexts to a user on a specific item. We evaluate the indirect context suggestion approaches over a movie data collected from user surveys, in comparison with direct context prediction approaches. Our experimental results reveal that indirect context suggestion is better and tensor factorization is generally the best way to suggest contexts to a user when given an item.","PeriodicalId":216017,"journal":{"name":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Indirect Context Suggestion\",\"authors\":\"Yong Zheng\",\"doi\":\"10.1145/3079628.3079654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context suggestion refers to the task of recommending appropriate contexts to the users to improve the user experience. The suggested contexts could be time, location, companion, category, and so forth. In this paper, we particularly focus on the task of suggesting appropriate contexts to a user on a specific item. We evaluate the indirect context suggestion approaches over a movie data collected from user surveys, in comparison with direct context prediction approaches. Our experimental results reveal that indirect context suggestion is better and tensor factorization is generally the best way to suggest contexts to a user when given an item.\",\"PeriodicalId\":216017,\"journal\":{\"name\":\"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3079628.3079654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079628.3079654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

上下文建议是指向用户推荐合适的上下文以改善用户体验的任务。建议的上下文可以是时间、地点、同伴、类别等等。在本文中,我们特别关注向用户推荐特定项目的适当上下文的任务。我们对从用户调查中收集的电影数据进行了间接上下文建议方法的评估,并与直接上下文预测方法进行了比较。我们的实验结果表明,当给定一个项目时,间接上下文建议更好,张量分解通常是向用户建议上下文的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indirect Context Suggestion
Context suggestion refers to the task of recommending appropriate contexts to the users to improve the user experience. The suggested contexts could be time, location, companion, category, and so forth. In this paper, we particularly focus on the task of suggesting appropriate contexts to a user on a specific item. We evaluate the indirect context suggestion approaches over a movie data collected from user surveys, in comparison with direct context prediction approaches. Our experimental results reveal that indirect context suggestion is better and tensor factorization is generally the best way to suggest contexts to a user when given an item.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信