基于空间填充曲线的大规模SPH模拟的有效动态负载平衡

Satori Tsuzuki, T. Aoki
{"title":"基于空间填充曲线的大规模SPH模拟的有效动态负载平衡","authors":"Satori Tsuzuki, T. Aoki","doi":"10.1109/SCALA.2016.5","DOIUrl":null,"url":null,"abstract":"Billion of particles are required to describe fluid dynamics by using smoothed particle hydrodynamics (SPH), which computes short-range interactions among particles. In this study, we develop a novel code of large-scale SPH simulations on a multi-GPU platform by using the domain decomposition technique. The computational load of each decomposed domain is dynamically balanced by applying domain re-decomposition, which maintains the same number of particles in each decomposed domain. The performance scalability of the SPH simulation is examined on the GPUs of a TSUBAME 2.5 supercomputer by using two different techniques of dynamic load balance: the slice-grid method and the hierarchical domain decomposition method using the space-filling curve. The weak and strong scalabilities of a test case using 111 million particles are measured with 512 GPUs. In comparison with the slice-grid method, the performance keeps improving in proportion to the number of GPUs in the case of the space-filling curve. The Hilbert curve and the Peano curve show better performance scalabilities than the Morton curve in proportion to the increase in the number of GPUs.","PeriodicalId":410521,"journal":{"name":"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Effective Dynamic Load Balance using Space-Filling Curves for Large-Scale SPH Simulations on GPU-rich Supercomputers\",\"authors\":\"Satori Tsuzuki, T. Aoki\",\"doi\":\"10.1109/SCALA.2016.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Billion of particles are required to describe fluid dynamics by using smoothed particle hydrodynamics (SPH), which computes short-range interactions among particles. In this study, we develop a novel code of large-scale SPH simulations on a multi-GPU platform by using the domain decomposition technique. The computational load of each decomposed domain is dynamically balanced by applying domain re-decomposition, which maintains the same number of particles in each decomposed domain. The performance scalability of the SPH simulation is examined on the GPUs of a TSUBAME 2.5 supercomputer by using two different techniques of dynamic load balance: the slice-grid method and the hierarchical domain decomposition method using the space-filling curve. The weak and strong scalabilities of a test case using 111 million particles are measured with 512 GPUs. In comparison with the slice-grid method, the performance keeps improving in proportion to the number of GPUs in the case of the space-filling curve. The Hilbert curve and the Peano curve show better performance scalabilities than the Morton curve in proportion to the increase in the number of GPUs.\",\"PeriodicalId\":410521,\"journal\":{\"name\":\"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCALA.2016.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCALA.2016.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

使用平滑粒子流体动力学(SPH)来描述流体动力学需要数十亿个粒子,SPH计算粒子之间的短程相互作用。在本研究中,我们利用域分解技术开发了一种在多gpu平台上进行大规模SPH仿真的新代码。通过应用域再分解来动态平衡每个分解域的计算量,使每个分解域的粒子数保持不变。在TSUBAME 2.5超级计算机的gpu上,采用两种不同的动态负载平衡技术:切片网格法和基于空间填充曲线的分层域分解法,验证了SPH仿真的性能可扩展性。使用512个gpu测量了使用1.11亿个粒子的测试用例的弱可伸缩性和强可伸缩性。与切片网格方法相比,在空间填充曲线的情况下,性能与gpu数量成比例地提高。随着gpu数量的增加,Hilbert曲线和Peano曲线表现出比Morton曲线更好的性能可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Dynamic Load Balance using Space-Filling Curves for Large-Scale SPH Simulations on GPU-rich Supercomputers
Billion of particles are required to describe fluid dynamics by using smoothed particle hydrodynamics (SPH), which computes short-range interactions among particles. In this study, we develop a novel code of large-scale SPH simulations on a multi-GPU platform by using the domain decomposition technique. The computational load of each decomposed domain is dynamically balanced by applying domain re-decomposition, which maintains the same number of particles in each decomposed domain. The performance scalability of the SPH simulation is examined on the GPUs of a TSUBAME 2.5 supercomputer by using two different techniques of dynamic load balance: the slice-grid method and the hierarchical domain decomposition method using the space-filling curve. The weak and strong scalabilities of a test case using 111 million particles are measured with 512 GPUs. In comparison with the slice-grid method, the performance keeps improving in proportion to the number of GPUs in the case of the space-filling curve. The Hilbert curve and the Peano curve show better performance scalabilities than the Morton curve in proportion to the increase in the number of GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信