面向分布式分组密码的计算

Andrea G. Forte, G. Ferrari
{"title":"面向分布式分组密码的计算","authors":"Andrea G. Forte, G. Ferrari","doi":"10.1109/WCNCW.2015.7122526","DOIUrl":null,"url":null,"abstract":"Providing data confidentiality for energyconstrained devices has proven to be a hard problem. Over the years many efficient implementations of well-known block ciphers, as well as a large number of new “lightweight” block ciphers, have been introduced. We propose to distribute block ciphers encryption and decryption operations between a subset of “trusted” nodes. Any block cipher, lightweight or not, can benefit from it. In particular, we analyze the energy consumption of AES128 in Cipher Block Chaining (CBC) mode and measure the energy savings that a distributed computation of AES128-CBC can give. We show that, by leveraging this distributed computation, a node can save up to 73% and up to 81% of the energy normally spent in encryption and decryption, respectively. This has relevant implications in Internet of Things scenarios.","PeriodicalId":123586,"journal":{"name":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards distributing block ciphers computations\",\"authors\":\"Andrea G. Forte, G. Ferrari\",\"doi\":\"10.1109/WCNCW.2015.7122526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Providing data confidentiality for energyconstrained devices has proven to be a hard problem. Over the years many efficient implementations of well-known block ciphers, as well as a large number of new “lightweight” block ciphers, have been introduced. We propose to distribute block ciphers encryption and decryption operations between a subset of “trusted” nodes. Any block cipher, lightweight or not, can benefit from it. In particular, we analyze the energy consumption of AES128 in Cipher Block Chaining (CBC) mode and measure the energy savings that a distributed computation of AES128-CBC can give. We show that, by leveraging this distributed computation, a node can save up to 73% and up to 81% of the energy normally spent in encryption and decryption, respectively. This has relevant implications in Internet of Things scenarios.\",\"PeriodicalId\":123586,\"journal\":{\"name\":\"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2015.7122526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2015.7122526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为能量受限的设备提供数据保密性已被证明是一个难题。多年来,已经引入了许多众所周知的分组密码的高效实现,以及大量新的“轻量级”分组密码。我们建议在“可信”节点的子集之间分发块密码加密和解密操作。任何分组密码,无论轻量级与否,都可以从中受益。特别地,我们分析了AES128在Cipher Block chains (CBC)模式下的能量消耗,并测量了AES128-CBC分布式计算所能带来的能量节约。我们表明,通过利用这种分布式计算,节点可以分别节省通常用于加密和解密的能量的73%和81%。这在物联网场景中具有相关的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards distributing block ciphers computations
Providing data confidentiality for energyconstrained devices has proven to be a hard problem. Over the years many efficient implementations of well-known block ciphers, as well as a large number of new “lightweight” block ciphers, have been introduced. We propose to distribute block ciphers encryption and decryption operations between a subset of “trusted” nodes. Any block cipher, lightweight or not, can benefit from it. In particular, we analyze the energy consumption of AES128 in Cipher Block Chaining (CBC) mode and measure the energy savings that a distributed computation of AES128-CBC can give. We show that, by leveraging this distributed computation, a node can save up to 73% and up to 81% of the energy normally spent in encryption and decryption, respectively. This has relevant implications in Internet of Things scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信