求解非线性约束优化问题的多目标帝国主义竞争算法

Chun-an Liu, H. Jia
{"title":"求解非线性约束优化问题的多目标帝国主义竞争算法","authors":"Chun-an Liu, H. Jia","doi":"10.21078/JSSI-2019-532-18","DOIUrl":null,"url":null,"abstract":"Abstract Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range of sciences such as portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a biobjective optimization problem. Second, in order to improve the diversity of evolution country swarm, and help the evolution country swarm to approach or land into the feasible region of the search space, three kinds of different methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst objective function value and the standard deviations.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiobjective Imperialist Competitive Algorithm for Solving Nonlinear Constrained Optimization Problems\",\"authors\":\"Chun-an Liu, H. Jia\",\"doi\":\"10.21078/JSSI-2019-532-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range of sciences such as portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a biobjective optimization problem. Second, in order to improve the diversity of evolution country swarm, and help the evolution country swarm to approach or land into the feasible region of the search space, three kinds of different methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst objective function value and the standard deviations.\",\"PeriodicalId\":258223,\"journal\":{\"name\":\"Journal of Systems Science and Information\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Science and Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21078/JSSI-2019-532-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2019-532-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非线性约束优化问题(NCOP)已广泛应用于投资组合、经济管理、航空航天工程和智能系统等科学领域。本文提出了求解NCOP问题的一种新的多目标帝国主义竞争算法。首先,我们回顾了一些现有的求解NOCP的优秀算法;然后,将非线性约束优化问题转化为双目标优化问题。其次,为了提高进化国家群体的多样性,帮助进化国家群体接近或降落到搜索空间的可行区域,给出了三种不同的群体向其相关帝国主义移动的方法。第三,在遗传算法中引入类似于重组算子的帝国与殖民地位置交换算子,丰富了算法的探索和开发能力。第四,为了加快收敛速度,提出了一种局部搜索方法。最后,对13个著名的NP-hard非线性约束优化函数进行了测试,实验结果表明,该方法在求解非线性约束优化问题时具有鲁棒性、高效性和通用性。与现有算法相比,该算法在最佳、平均、最差目标函数值和标准差方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective Imperialist Competitive Algorithm for Solving Nonlinear Constrained Optimization Problems
Abstract Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range of sciences such as portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a biobjective optimization problem. Second, in order to improve the diversity of evolution country swarm, and help the evolution country swarm to approach or land into the feasible region of the search space, three kinds of different methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst objective function value and the standard deviations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信