Joseph Hutter, J. Szaday, Jaemin Choi, Simeng Liu, L. Kalé, S. Wallace, Thomas R. Quinn
{"title":"ParaTreeT:一个快速、通用的空间树遍历框架","authors":"Joseph Hutter, J. Szaday, Jaemin Choi, Simeng Liu, L. Kalé, S. Wallace, Thomas R. Quinn","doi":"10.1109/ipdps53621.2022.00079","DOIUrl":null,"url":null,"abstract":"Tree-based algorithms for spatial domain applications scale poorly in the distributed setting without extensive experimentation and optimization. Reusability via well-designed parallel abstractions supported by efficient parallel algorithms is therefore desirable. We present ParaTreeT, a parallel tree toolkit for state-of-the-art performance and programmer productivity. ParaTreeT leverages a novel shared-memory software cache to reduce communication volume and idle time throughout traversal. By dividing particles and subtrees across processors independently, it improves decomposition and limits synchro-nization during tree build. Tree-node states are extracted from the particle set with the Data abstraction, and traversal work and pruning are defined by the Visitor abstraction. ParaTreeT provides built-in trees, decompositions, and traversals that offer application-specific customization. We demonstrate ParaTreeT's improved computational performance over even specialized codes with multiple applications on CPUs. We evaluate how several applications derive benefit from ParaTreeT's models while pro-viding new insights to these workloads through experimentation.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ParaTreeT: A Fast, General Framework for Spatial Tree Traversal\",\"authors\":\"Joseph Hutter, J. Szaday, Jaemin Choi, Simeng Liu, L. Kalé, S. Wallace, Thomas R. Quinn\",\"doi\":\"10.1109/ipdps53621.2022.00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tree-based algorithms for spatial domain applications scale poorly in the distributed setting without extensive experimentation and optimization. Reusability via well-designed parallel abstractions supported by efficient parallel algorithms is therefore desirable. We present ParaTreeT, a parallel tree toolkit for state-of-the-art performance and programmer productivity. ParaTreeT leverages a novel shared-memory software cache to reduce communication volume and idle time throughout traversal. By dividing particles and subtrees across processors independently, it improves decomposition and limits synchro-nization during tree build. Tree-node states are extracted from the particle set with the Data abstraction, and traversal work and pruning are defined by the Visitor abstraction. ParaTreeT provides built-in trees, decompositions, and traversals that offer application-specific customization. We demonstrate ParaTreeT's improved computational performance over even specialized codes with multiple applications on CPUs. We evaluate how several applications derive benefit from ParaTreeT's models while pro-viding new insights to these workloads through experimentation.\",\"PeriodicalId\":321801,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ipdps53621.2022.00079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ParaTreeT: A Fast, General Framework for Spatial Tree Traversal
Tree-based algorithms for spatial domain applications scale poorly in the distributed setting without extensive experimentation and optimization. Reusability via well-designed parallel abstractions supported by efficient parallel algorithms is therefore desirable. We present ParaTreeT, a parallel tree toolkit for state-of-the-art performance and programmer productivity. ParaTreeT leverages a novel shared-memory software cache to reduce communication volume and idle time throughout traversal. By dividing particles and subtrees across processors independently, it improves decomposition and limits synchro-nization during tree build. Tree-node states are extracted from the particle set with the Data abstraction, and traversal work and pruning are defined by the Visitor abstraction. ParaTreeT provides built-in trees, decompositions, and traversals that offer application-specific customization. We demonstrate ParaTreeT's improved computational performance over even specialized codes with multiple applications on CPUs. We evaluate how several applications derive benefit from ParaTreeT's models while pro-viding new insights to these workloads through experimentation.