独立成分分析和超越脑成像:EEG, MEG, fMRI和PET

Jagath Rajapakse, A. Cichocki, V. Sanchez A.
{"title":"独立成分分析和超越脑成像:EEG, MEG, fMRI和PET","authors":"Jagath Rajapakse, A. Cichocki, V. Sanchez A.","doi":"10.1109/ICONIP.2002.1202202","DOIUrl":null,"url":null,"abstract":"There is an increasing interest in analyzing brain images from various imaging modalities, that record the brain activity during functional task, for understanding how the brain functions as well as for the diagnosis and treatment of brain disease. Independent component analysis (ICA), an exploratory and unsupervised technique, separates various signal sources mixed in brain imaging signals such as brain activation and noise, assuming that the sources are mutually independent in the complete statistical sense. This paper summarizes various applications of ICA in processing brain imaging signals: EEG, MEG, fMRI or PET. We highlight the current issues and limitations of applying ICA in these applications, current, and future directions of research.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Independent component analysis and beyond in brain imaging: EEG, MEG, fMRI, and PET\",\"authors\":\"Jagath Rajapakse, A. Cichocki, V. Sanchez A.\",\"doi\":\"10.1109/ICONIP.2002.1202202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing interest in analyzing brain images from various imaging modalities, that record the brain activity during functional task, for understanding how the brain functions as well as for the diagnosis and treatment of brain disease. Independent component analysis (ICA), an exploratory and unsupervised technique, separates various signal sources mixed in brain imaging signals such as brain activation and noise, assuming that the sources are mutually independent in the complete statistical sense. This paper summarizes various applications of ICA in processing brain imaging signals: EEG, MEG, fMRI or PET. We highlight the current issues and limitations of applying ICA in these applications, current, and future directions of research.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1202202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

人们对分析各种成像方式的大脑图像越来越感兴趣,这些图像记录了功能性任务期间的大脑活动,以了解大脑的功能以及脑部疾病的诊断和治疗。独立分量分析(Independent component analysis, ICA)是一种探索性和无监督的技术,它将混合在脑成像信号中的各种信号源(如脑激活和噪声)分离出来,假设这些信号源在完全统计意义上是相互独立的。本文综述了ICA在脑成像信号处理中的各种应用:EEG、MEG、fMRI和PET。我们强调了在这些应用中应用ICA的当前问题和局限性,以及当前和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent component analysis and beyond in brain imaging: EEG, MEG, fMRI, and PET
There is an increasing interest in analyzing brain images from various imaging modalities, that record the brain activity during functional task, for understanding how the brain functions as well as for the diagnosis and treatment of brain disease. Independent component analysis (ICA), an exploratory and unsupervised technique, separates various signal sources mixed in brain imaging signals such as brain activation and noise, assuming that the sources are mutually independent in the complete statistical sense. This paper summarizes various applications of ICA in processing brain imaging signals: EEG, MEG, fMRI or PET. We highlight the current issues and limitations of applying ICA in these applications, current, and future directions of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信