集成压缩感知和YOLOv4在仪表盘摄像头图像存储和目标识别中的应用

Jim-Wei Wu, Cheng-Chia Wu, Wen-Shan Cen, Shao-An Chao, Jui-Tse Weng
{"title":"集成压缩感知和YOLOv4在仪表盘摄像头图像存储和目标识别中的应用","authors":"Jim-Wei Wu, Cheng-Chia Wu, Wen-Shan Cen, Shao-An Chao, Jui-Tse Weng","doi":"10.1109/anzcc53563.2021.9628221","DOIUrl":null,"url":null,"abstract":"This paper focuses on the research of the dashboard camera for improving the storage space and object recognition. The experiments showed that the CS method of ISTA-Net (Iterative Shrinkage Thresholding Algorithm with Network) can reduce the storage space by at least 60% and without obviously sacrificing the image quality. Furthermore, the recognition method by YOLOv4 can overcome the variety of environments, which can reach the recognition ratio of over 80% in a small 480x480 pixels. The recognition function can help to quickly catch the key features (ex: car, traffic signal, pedestrian, etc.) in the storage data of the dashboard camera.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated Compressed Sensing and YOLOv4 for Application in Image-storage and Object-recognition of Dashboard Camera\",\"authors\":\"Jim-Wei Wu, Cheng-Chia Wu, Wen-Shan Cen, Shao-An Chao, Jui-Tse Weng\",\"doi\":\"10.1109/anzcc53563.2021.9628221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the research of the dashboard camera for improving the storage space and object recognition. The experiments showed that the CS method of ISTA-Net (Iterative Shrinkage Thresholding Algorithm with Network) can reduce the storage space by at least 60% and without obviously sacrificing the image quality. Furthermore, the recognition method by YOLOv4 can overcome the variety of environments, which can reach the recognition ratio of over 80% in a small 480x480 pixels. The recognition function can help to quickly catch the key features (ex: car, traffic signal, pedestrian, etc.) in the storage data of the dashboard camera.\",\"PeriodicalId\":246687,\"journal\":{\"name\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/anzcc53563.2021.9628221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要对车载摄像头进行研究,以提高存储空间和目标识别能力。实验表明,在不明显牺牲图像质量的情况下,sta - net(迭代收缩阈值算法with Network)的CS方法可以将存储空间减少至少60%。此外,YOLOv4的识别方法可以克服各种环境,在480 × 480像素的小范围内可以达到80%以上的识别率。识别功能可以帮助快速捕捉仪表盘摄像头存储数据中的关键特征(如:汽车、交通信号、行人等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Compressed Sensing and YOLOv4 for Application in Image-storage and Object-recognition of Dashboard Camera
This paper focuses on the research of the dashboard camera for improving the storage space and object recognition. The experiments showed that the CS method of ISTA-Net (Iterative Shrinkage Thresholding Algorithm with Network) can reduce the storage space by at least 60% and without obviously sacrificing the image quality. Furthermore, the recognition method by YOLOv4 can overcome the variety of environments, which can reach the recognition ratio of over 80% in a small 480x480 pixels. The recognition function can help to quickly catch the key features (ex: car, traffic signal, pedestrian, etc.) in the storage data of the dashboard camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信