时滞分布反馈控制的镇定

A. Domoshnitsky, I. Volinsky, A. Polonsky, A. Sitkin
{"title":"时滞分布反馈控制的镇定","authors":"A. Domoshnitsky, I. Volinsky, A. Polonsky, A. Sitkin","doi":"10.1051/MMNP/2017067","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach to stability of integro-differential equations x′′t+β 1 ∫ t-τ1tte-α1t-sxsds+β 2 ∫ t-τ2tte-α2t-sxsds=0 and x′′t+β 1 ∫ 0t-τ1te-α1t-sxsds +β 2 ∫ 0t-τ2te-α2t-sxsds=0 is proposed. Under corresponding conditions on the coefficients α 1 , α 2 , β 1 and β 2 the first equation is exponentially stable if the delays τ 1  (t ) and τ 2  (t ) are large enough and the second equation is exponentially stable if these delays are small enough. On the basis of these results, assertions on stabilization by distributed input control are proven. It should be stressed that stabilization of this sort, according to common belief, requires a damping term in the second order differential equation. Results obtained in this paper demonstrate that this is not the case.","PeriodicalId":270349,"journal":{"name":"Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Stabilization by Delay Distributed Feedback Control\",\"authors\":\"A. Domoshnitsky, I. Volinsky, A. Polonsky, A. Sitkin\",\"doi\":\"10.1051/MMNP/2017067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new approach to stability of integro-differential equations x′′t+β 1 ∫ t-τ1tte-α1t-sxsds+β 2 ∫ t-τ2tte-α2t-sxsds=0 and x′′t+β 1 ∫ 0t-τ1te-α1t-sxsds +β 2 ∫ 0t-τ2te-α2t-sxsds=0 is proposed. Under corresponding conditions on the coefficients α 1 , α 2 , β 1 and β 2 the first equation is exponentially stable if the delays τ 1  (t ) and τ 2  (t ) are large enough and the second equation is exponentially stable if these delays are small enough. On the basis of these results, assertions on stabilization by distributed input control are proven. It should be stressed that stabilization of this sort, according to common belief, requires a damping term in the second order differential equation. Results obtained in this paper demonstrate that this is not the case.\",\"PeriodicalId\":270349,\"journal\":{\"name\":\"Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations\",\"volume\":\"331 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MMNP/2017067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MMNP/2017067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了求解积分微分方程x′t+β 1∫t-τ1tte-α1t-sxsds+β 2∫t-τ2tte-α2t-sxsds=0和x′t+β 1∫0t-τ1te-α1t-sxsds +β 2∫0t-τ2te-α2t-sxsds=0的稳定性新方法。在系数α 1, α 2, β 1和β 2的相应条件下,如果延迟τ 1 (t)和τ 2 (t)足够大,则第一个方程是指数稳定的,如果这些延迟足够小,则第二个方程是指数稳定的。在此基础上,证明了分布式输入控制的镇定性。应该强调的是,根据一般的看法,这种稳定化需要二阶微分方程中有一个阻尼项。本文的结果表明,情况并非如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization by Delay Distributed Feedback Control
In this paper, a new approach to stability of integro-differential equations x′′t+β 1 ∫ t-τ1tte-α1t-sxsds+β 2 ∫ t-τ2tte-α2t-sxsds=0 and x′′t+β 1 ∫ 0t-τ1te-α1t-sxsds +β 2 ∫ 0t-τ2te-α2t-sxsds=0 is proposed. Under corresponding conditions on the coefficients α 1 , α 2 , β 1 and β 2 the first equation is exponentially stable if the delays τ 1  (t ) and τ 2  (t ) are large enough and the second equation is exponentially stable if these delays are small enough. On the basis of these results, assertions on stabilization by distributed input control are proven. It should be stressed that stabilization of this sort, according to common belief, requires a damping term in the second order differential equation. Results obtained in this paper demonstrate that this is not the case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信