基于几何约束独立矢量分析的迭代源导向在线加速算法

Kana Goto, Tetsuya Ueda, Li Li, Takeshi Yamada, S. Makino
{"title":"基于几何约束独立矢量分析的迭代源导向在线加速算法","authors":"Kana Goto, Tetsuya Ueda, Li Li, Takeshi Yamada, S. Makino","doi":"10.23919/APSIPAASC55919.2022.9980301","DOIUrl":null,"url":null,"abstract":"In this paper, we derive an alternative online algorithm for geometrically constrained independent vector analysis (GC-IVA) based on iterative source steering (ISS) to tackle real-time directional speech enhancement. The proposed algorithm fully exploits the advantages of the auxiliary function approach, i.e., fast convergence and no stepsize tuning, and ISS, i.e., low computational complexity and numerical stability, making it highly suitable for practical use. In addition, we investigate the performance impact of using estimated spatial information, which is assumed to be known as prior information in GC-IVA. Specifically, we evaluate the proposed algorithm with geometric constraints defined using directions of arrival (DOAs) estimated by the multiple signal classification (MUSIC) method. Experimental results revealed that the proposed online algorithm could work in real-time and achieve comparable speech enhancement performance with the conventional method called online GC-AuxIVA-VCD while significantly reducing execution times in the situation where a fixed target was interfered with by a moving interference.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accelerating online algorithm using geometrically constrained independent vector analysis with iterative source steering\",\"authors\":\"Kana Goto, Tetsuya Ueda, Li Li, Takeshi Yamada, S. Makino\",\"doi\":\"10.23919/APSIPAASC55919.2022.9980301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive an alternative online algorithm for geometrically constrained independent vector analysis (GC-IVA) based on iterative source steering (ISS) to tackle real-time directional speech enhancement. The proposed algorithm fully exploits the advantages of the auxiliary function approach, i.e., fast convergence and no stepsize tuning, and ISS, i.e., low computational complexity and numerical stability, making it highly suitable for practical use. In addition, we investigate the performance impact of using estimated spatial information, which is assumed to be known as prior information in GC-IVA. Specifically, we evaluate the proposed algorithm with geometric constraints defined using directions of arrival (DOAs) estimated by the multiple signal classification (MUSIC) method. Experimental results revealed that the proposed online algorithm could work in real-time and achieve comparable speech enhancement performance with the conventional method called online GC-AuxIVA-VCD while significantly reducing execution times in the situation where a fixed target was interfered with by a moving interference.\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9980301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9980301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们推导了一种基于迭代源转向(ISS)的几何约束独立矢量分析(GC-IVA)的替代在线算法,以解决实时定向语音增强问题。该算法充分利用了辅助函数法收敛快、无需步长调整的优点,以及ISS法计算复杂度低、数值稳定性好的优点,非常适合实际应用。此外,我们研究了使用估计的空间信息对性能的影响,这些信息在GC-IVA中被认为是已知的先验信息。具体来说,我们使用由多信号分类(MUSIC)方法估计的到达方向(DOAs)定义的几何约束来评估所提出的算法。实验结果表明,在固定目标被移动干扰的情况下,所提出的在线算法能够实时工作,并取得与传统在线GC-AuxIVA-VCD方法相当的语音增强性能,同时显著减少了执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating online algorithm using geometrically constrained independent vector analysis with iterative source steering
In this paper, we derive an alternative online algorithm for geometrically constrained independent vector analysis (GC-IVA) based on iterative source steering (ISS) to tackle real-time directional speech enhancement. The proposed algorithm fully exploits the advantages of the auxiliary function approach, i.e., fast convergence and no stepsize tuning, and ISS, i.e., low computational complexity and numerical stability, making it highly suitable for practical use. In addition, we investigate the performance impact of using estimated spatial information, which is assumed to be known as prior information in GC-IVA. Specifically, we evaluate the proposed algorithm with geometric constraints defined using directions of arrival (DOAs) estimated by the multiple signal classification (MUSIC) method. Experimental results revealed that the proposed online algorithm could work in real-time and achieve comparable speech enhancement performance with the conventional method called online GC-AuxIVA-VCD while significantly reducing execution times in the situation where a fixed target was interfered with by a moving interference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信