太阳能发电和负荷需求预测的不确定性对微网优化运行的影响

M. Husein, Il-Yop Chung
{"title":"太阳能发电和负荷需求预测的不确定性对微网优化运行的影响","authors":"M. Husein, Il-Yop Chung","doi":"10.1109/PowerAfrica.2019.8928924","DOIUrl":null,"url":null,"abstract":"Operation optimization of a microgrid is formulated based on the forecast of renewable energy resources and electricity demand. The forecast error will introduce uncertainties thereby affecting the accuracy and optimality of the solution. In this paper, the impact of this uncertainty is investigated as it receives little attention in the literature. First, an accurate forecasting model for solar irradiance and electricity demand using long short-term memory recurrent neural network and feedforward neural network is developed. To improve the forecasting accuracy, the k-means clustering algorithm is used to partition the datasets into a number of clusters. Second, MDSTool is used to simulate a one-year operation optimization of the microgrid using both the actual and forecasted data. MDSTool is a decision support tool that we developed in our previous work. We find that the forecast errors have a significant impact on the microgrid’s annual energy savings.","PeriodicalId":308661,"journal":{"name":"2019 IEEE PES/IAS PowerAfrica","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Impact of Solar Power and Load Demand Forecast Uncertainty on the Optimal Operation of Microgrid\",\"authors\":\"M. Husein, Il-Yop Chung\",\"doi\":\"10.1109/PowerAfrica.2019.8928924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operation optimization of a microgrid is formulated based on the forecast of renewable energy resources and electricity demand. The forecast error will introduce uncertainties thereby affecting the accuracy and optimality of the solution. In this paper, the impact of this uncertainty is investigated as it receives little attention in the literature. First, an accurate forecasting model for solar irradiance and electricity demand using long short-term memory recurrent neural network and feedforward neural network is developed. To improve the forecasting accuracy, the k-means clustering algorithm is used to partition the datasets into a number of clusters. Second, MDSTool is used to simulate a one-year operation optimization of the microgrid using both the actual and forecasted data. MDSTool is a decision support tool that we developed in our previous work. We find that the forecast errors have a significant impact on the microgrid’s annual energy savings.\",\"PeriodicalId\":308661,\"journal\":{\"name\":\"2019 IEEE PES/IAS PowerAfrica\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES/IAS PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerAfrica.2019.8928924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica.2019.8928924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于对可再生能源资源和电力需求的预测,制定了微电网运行优化方案。预测误差会引入不确定性,从而影响解的准确性和最优性。在本文中,研究了这种不确定性的影响,因为它在文献中很少受到关注。首先,利用长短期记忆递归神经网络和前馈神经网络建立了太阳辐照度和电力需求的精确预测模型。为了提高预测精度,采用k-means聚类算法将数据集划分为多个聚类。其次,利用MDSTool对微电网的实际和预测数据进行了为期一年的运行优化模拟。MDSTool是我们在之前的工作中开发的一个决策支持工具。研究发现,预测误差对微电网的年节能效果有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Solar Power and Load Demand Forecast Uncertainty on the Optimal Operation of Microgrid
Operation optimization of a microgrid is formulated based on the forecast of renewable energy resources and electricity demand. The forecast error will introduce uncertainties thereby affecting the accuracy and optimality of the solution. In this paper, the impact of this uncertainty is investigated as it receives little attention in the literature. First, an accurate forecasting model for solar irradiance and electricity demand using long short-term memory recurrent neural network and feedforward neural network is developed. To improve the forecasting accuracy, the k-means clustering algorithm is used to partition the datasets into a number of clusters. Second, MDSTool is used to simulate a one-year operation optimization of the microgrid using both the actual and forecasted data. MDSTool is a decision support tool that we developed in our previous work. We find that the forecast errors have a significant impact on the microgrid’s annual energy savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信