RSSD:通过SSD检测器中的注意区域进行对象检测

Shuren Zhou, Jia Qiu
{"title":"RSSD:通过SSD检测器中的注意区域进行对象检测","authors":"Shuren Zhou, Jia Qiu","doi":"10.1109/IICSPI48186.2019.9095895","DOIUrl":null,"url":null,"abstract":"This paper designs a module of attention regions in SSD detector for accurate and efficient object detection (RSSD). Different from previous one-stage detection method like SSD which just simply applied the multi-scale head-features and directly extracted from backbone network, for classification and regression, our method aims to strengthen the characterization of head-features further. The parallel encode-to-decode structure is constructed and a computation method of regional distribution on features (R-Softmax) is proposed. What’s more, in order to reduce time-costs, the down-sampling layers are shared with the multi-scale layers from backbone network. Our detector performs better on PASCAL VOC datasets (e.g., 78.4% mAP V.S. SSD 76.4% on VOC 07test) and costs 0.001s per image more than SSD.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RSSD: Object Detection via Attention Regions in SSD Detector\",\"authors\":\"Shuren Zhou, Jia Qiu\",\"doi\":\"10.1109/IICSPI48186.2019.9095895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper designs a module of attention regions in SSD detector for accurate and efficient object detection (RSSD). Different from previous one-stage detection method like SSD which just simply applied the multi-scale head-features and directly extracted from backbone network, for classification and regression, our method aims to strengthen the characterization of head-features further. The parallel encode-to-decode structure is constructed and a computation method of regional distribution on features (R-Softmax) is proposed. What’s more, in order to reduce time-costs, the down-sampling layers are shared with the multi-scale layers from backbone network. Our detector performs better on PASCAL VOC datasets (e.g., 78.4% mAP V.S. SSD 76.4% on VOC 07test) and costs 0.001s per image more than SSD.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9095895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为实现准确、高效的目标检测,设计了一种SSD检测器关注区域模块。与SSD等以往的单阶段检测方法只是简单地应用多尺度头部特征,直接从骨干网中提取进行分类和回归不同,我们的方法旨在进一步加强头部特征的表征。构造了并行编解码结构,提出了一种特征区域分布的计算方法(R-Softmax)。此外,为了减少时间成本,下采样层与骨干网的多尺度层共享。我们的检测器在PASCAL VOC数据集上表现更好(例如,mAP为78.4%,SSD为76.4%,VOC 07测试),每张图像的成本比SSD高0.001s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSSD: Object Detection via Attention Regions in SSD Detector
This paper designs a module of attention regions in SSD detector for accurate and efficient object detection (RSSD). Different from previous one-stage detection method like SSD which just simply applied the multi-scale head-features and directly extracted from backbone network, for classification and regression, our method aims to strengthen the characterization of head-features further. The parallel encode-to-decode structure is constructed and a computation method of regional distribution on features (R-Softmax) is proposed. What’s more, in order to reduce time-costs, the down-sampling layers are shared with the multi-scale layers from backbone network. Our detector performs better on PASCAL VOC datasets (e.g., 78.4% mAP V.S. SSD 76.4% on VOC 07test) and costs 0.001s per image more than SSD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信