{"title":"欧几里得委员会选择中的容错","authors":"Chinmay Sonar, S. Suri, J. Xue","doi":"10.48550/arXiv.2308.07268","DOIUrl":null,"url":null,"abstract":"In the committee selection problem, the goal is to choose a subset of size $k$ from a set of candidates $C$ that collectively gives the best representation to a set of voters. We consider this problem in Euclidean $d$-space where each voter/candidate is a point and voters' preferences are implicitly represented by Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the following three variants: (1) given a committee and a set of $f$ failing candidates, find their optimal replacement; (2) compute the worst-case replacement score for a given committee under failure of $f$ candidates; and (3) design a committee with the best replacement score under worst-case failures. The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule: minimize the maximum distance between any voter and its closest candidate in the committee. Our main results include the following: (1) in one dimension, all three problems can be solved in polynomial time; (2) in dimension $d \\geq 2$, all three problems are NP-hard; and (3) all three problems admit a constant-factor approximation in any fixed dimension, and the optimal committee problem has an FPT bicriterion approximation.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Tolerance in Euclidean Committee Selection\",\"authors\":\"Chinmay Sonar, S. Suri, J. Xue\",\"doi\":\"10.48550/arXiv.2308.07268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the committee selection problem, the goal is to choose a subset of size $k$ from a set of candidates $C$ that collectively gives the best representation to a set of voters. We consider this problem in Euclidean $d$-space where each voter/candidate is a point and voters' preferences are implicitly represented by Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the following three variants: (1) given a committee and a set of $f$ failing candidates, find their optimal replacement; (2) compute the worst-case replacement score for a given committee under failure of $f$ candidates; and (3) design a committee with the best replacement score under worst-case failures. The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule: minimize the maximum distance between any voter and its closest candidate in the committee. Our main results include the following: (1) in one dimension, all three problems can be solved in polynomial time; (2) in dimension $d \\\\geq 2$, all three problems are NP-hard; and (3) all three problems admit a constant-factor approximation in any fixed dimension, and the optimal committee problem has an FPT bicriterion approximation.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2308.07268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.07268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the committee selection problem, the goal is to choose a subset of size $k$ from a set of candidates $C$ that collectively gives the best representation to a set of voters. We consider this problem in Euclidean $d$-space where each voter/candidate is a point and voters' preferences are implicitly represented by Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the following three variants: (1) given a committee and a set of $f$ failing candidates, find their optimal replacement; (2) compute the worst-case replacement score for a given committee under failure of $f$ candidates; and (3) design a committee with the best replacement score under worst-case failures. The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule: minimize the maximum distance between any voter and its closest candidate in the committee. Our main results include the following: (1) in one dimension, all three problems can be solved in polynomial time; (2) in dimension $d \geq 2$, all three problems are NP-hard; and (3) all three problems admit a constant-factor approximation in any fixed dimension, and the optimal committee problem has an FPT bicriterion approximation.