基于MIV和ELM的航空发动机参数预测实例研究

Yingshun Li, Fuyang Wang, Ximing Sun, X. Yi
{"title":"基于MIV和ELM的航空发动机参数预测实例研究","authors":"Yingshun Li, Fuyang Wang, Ximing Sun, X. Yi","doi":"10.1109/SDPC.2019.00019","DOIUrl":null,"url":null,"abstract":"Aiming at the problems existing in the current prediction methods of aeroengine parameters, such as the difficulty in parameter selection, the slow training speed and the tendency to fall into local optimal solution of traditional BP neural network algorithm, this paper proposes the prediction method of aeroengine performance parameters based on mean influence value (MIV) algorithm and extreme learning machine (ELM). Firstly, we preprocess the sample data. Secondly, screening out the main parameters that affect the predicted parameters by MIV algorithm, attribute reduction is realized, the result of attribute reduction is taken as the input to train an ELM. Finally, using the test samples to do the test. The testing results show that the algorithm is faster and more accurate in parameter prediction.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case study of aeroengine parameter prediction based on MIV and ELM\",\"authors\":\"Yingshun Li, Fuyang Wang, Ximing Sun, X. Yi\",\"doi\":\"10.1109/SDPC.2019.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems existing in the current prediction methods of aeroengine parameters, such as the difficulty in parameter selection, the slow training speed and the tendency to fall into local optimal solution of traditional BP neural network algorithm, this paper proposes the prediction method of aeroengine performance parameters based on mean influence value (MIV) algorithm and extreme learning machine (ELM). Firstly, we preprocess the sample data. Secondly, screening out the main parameters that affect the predicted parameters by MIV algorithm, attribute reduction is realized, the result of attribute reduction is taken as the input to train an ELM. Finally, using the test samples to do the test. The testing results show that the algorithm is faster and more accurate in parameter prediction.\",\"PeriodicalId\":403595,\"journal\":{\"name\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDPC.2019.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对目前航空发动机参数预测方法中存在的传统BP神经网络算法参数选择困难、训练速度慢、容易陷入局部最优解等问题,提出了基于平均影响值(MIV)算法和极限学习机(ELM)的航空发动机性能参数预测方法。首先,对样本数据进行预处理。其次,利用MIV算法筛选出影响预测参数的主要参数,实现属性约简,将属性约简结果作为训练ELM的输入;最后,使用测试样本进行测试。测试结果表明,该算法在参数预测方面速度更快,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Case study of aeroengine parameter prediction based on MIV and ELM
Aiming at the problems existing in the current prediction methods of aeroengine parameters, such as the difficulty in parameter selection, the slow training speed and the tendency to fall into local optimal solution of traditional BP neural network algorithm, this paper proposes the prediction method of aeroengine performance parameters based on mean influence value (MIV) algorithm and extreme learning machine (ELM). Firstly, we preprocess the sample data. Secondly, screening out the main parameters that affect the predicted parameters by MIV algorithm, attribute reduction is realized, the result of attribute reduction is taken as the input to train an ELM. Finally, using the test samples to do the test. The testing results show that the algorithm is faster and more accurate in parameter prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信