区间多项式对特殊左扇区鲁棒稳定性的极值点结果

H. Kang, H. Kang
{"title":"区间多项式对特殊左扇区鲁棒稳定性的极值点结果","authors":"H. Kang, H. Kang","doi":"10.1109/ISRCS.2009.5252518","DOIUrl":null,"url":null,"abstract":"In this paper, we consider robust stability of interval polynomials of which stability region is the special left sector. The argument of the boundary of the special left sector is expressible as an irrational number multiplied by the circle ratio. We show that a family of interval polynomials is robustly stable if and only if a small set of vertex polynomials are robustly stable. This new result comes from the construction algorithm of the value set and the zero exclusion principle.","PeriodicalId":158186,"journal":{"name":"2009 2nd International Symposium on Resilient Control Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme point result for robust stability of interval polynomials to the special left sector\",\"authors\":\"H. Kang, H. Kang\",\"doi\":\"10.1109/ISRCS.2009.5252518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider robust stability of interval polynomials of which stability region is the special left sector. The argument of the boundary of the special left sector is expressible as an irrational number multiplied by the circle ratio. We show that a family of interval polynomials is robustly stable if and only if a small set of vertex polynomials are robustly stable. This new result comes from the construction algorithm of the value set and the zero exclusion principle.\",\"PeriodicalId\":158186,\"journal\":{\"name\":\"2009 2nd International Symposium on Resilient Control Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Symposium on Resilient Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRCS.2009.5252518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Symposium on Resilient Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRCS.2009.5252518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究稳定区域为特殊左扇区的区间多项式的鲁棒稳定性问题。特殊左扇区边界的参数可表示为无理数乘以圆比。我们证明了区间多项式族是鲁棒稳定的当且仅当一个小的顶点多项式集是鲁棒稳定的。这一新结果来源于值集的构造算法和零不相容原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme point result for robust stability of interval polynomials to the special left sector
In this paper, we consider robust stability of interval polynomials of which stability region is the special left sector. The argument of the boundary of the special left sector is expressible as an irrational number multiplied by the circle ratio. We show that a family of interval polynomials is robustly stable if and only if a small set of vertex polynomials are robustly stable. This new result comes from the construction algorithm of the value set and the zero exclusion principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信