信号处理(密度估计)中距离/相似性测量的研究

D. M. Souza, I. A. Costa, R. Nobrega
{"title":"信号处理(密度估计)中距离/相似性测量的研究","authors":"D. M. Souza, I. A. Costa, R. Nobrega","doi":"10.1109/INSCIT.2017.8103517","DOIUrl":null,"url":null,"abstract":"Currently the number of applications where the data generation function is not known has been growing, making necessary the use of non-parametric estimation techniques to describe such model. Therefore, relevant questions emerge regarding the quality of the model that represents some dataset and how to quantify this quality. This article aims to evaluate some of the measurements presented in the literature used for this purpose, evaluating different pdf regions in the context of goodness of fit.","PeriodicalId":416167,"journal":{"name":"2017 2nd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study of distance/similarity measurements in the context of signal processing (density estimation)\",\"authors\":\"D. M. Souza, I. A. Costa, R. Nobrega\",\"doi\":\"10.1109/INSCIT.2017.8103517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently the number of applications where the data generation function is not known has been growing, making necessary the use of non-parametric estimation techniques to describe such model. Therefore, relevant questions emerge regarding the quality of the model that represents some dataset and how to quantify this quality. This article aims to evaluate some of the measurements presented in the literature used for this purpose, evaluating different pdf regions in the context of goodness of fit.\",\"PeriodicalId\":416167,\"journal\":{\"name\":\"2017 2nd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INSCIT.2017.8103517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INSCIT.2017.8103517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,数据生成函数未知的应用越来越多,因此有必要使用非参数估计技术来描述这类模型。因此,出现了有关代表某些数据集的模型的质量以及如何量化这种质量的相关问题。本文旨在评估用于此目的的文献中提出的一些测量方法,在拟合优度的背景下评估不同的pdf区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of distance/similarity measurements in the context of signal processing (density estimation)
Currently the number of applications where the data generation function is not known has been growing, making necessary the use of non-parametric estimation techniques to describe such model. Therefore, relevant questions emerge regarding the quality of the model that represents some dataset and how to quantify this quality. This article aims to evaluate some of the measurements presented in the literature used for this purpose, evaluating different pdf regions in the context of goodness of fit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信