分支程序的时空权衡

P. Beame, M. Saks, Jayram S. Thathachar
{"title":"分支程序的时空权衡","authors":"P. Beame, M. Saks, Jayram S. Thathachar","doi":"10.1109/SFCS.1998.743453","DOIUrl":null,"url":null,"abstract":"We obtain the first non-trivial time-space tradeoff lower bound for functions f: {0,1}/sup n//spl rarr/{0,1} on general branching programs by exhibiting a Boolean function f that requires exponential size to be computed by any branching program of length (1+/spl epsiv/)n, for some constant /spl epsiv/>0. We also give the first separation result between the syntactic and semantic read-k models for k>1 by showing that polynomial-size semantic read-twice branching programs can compute functions that require exponential size on any syntactic read-k branching program. We also show a time-space tradeoff result on the more general R-way branching program model: for any k, we give a function that requires exponential size to be computed by length kn q-way branching programs, for some q=q(k).","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Time-space tradeoffs for branching programs\",\"authors\":\"P. Beame, M. Saks, Jayram S. Thathachar\",\"doi\":\"10.1109/SFCS.1998.743453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the first non-trivial time-space tradeoff lower bound for functions f: {0,1}/sup n//spl rarr/{0,1} on general branching programs by exhibiting a Boolean function f that requires exponential size to be computed by any branching program of length (1+/spl epsiv/)n, for some constant /spl epsiv/>0. We also give the first separation result between the syntactic and semantic read-k models for k>1 by showing that polynomial-size semantic read-twice branching programs can compute functions that require exponential size on any syntactic read-k branching program. We also show a time-space tradeoff result on the more general R-way branching program model: for any k, we give a function that requires exponential size to be computed by length kn q-way branching programs, for some q=q(k).\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

通过展示一个布尔函数f,我们获得了函数f: {0,1}/sup n//spl rarr/{0,1}在一般分支程序上的第一个非平凡的时空权衡下界,该函数要求任何长度为(1+/spl epsiv/)n的分支程序计算指数大小,对于某个常数/spl epsiv/>0。我们还给出了k>1的句法和语义读-k模型之间的第一个分离结果,表明多项式大小的语义读-两次分支程序可以计算任何语法读-k分支程序上需要指数大小的函数。我们还展示了更一般的r路分支规划模型的时空权衡结果:对于任何k,我们给出一个函数,该函数需要通过长度kn来计算指数大小q路分支规划,对于某些q=q(k)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-space tradeoffs for branching programs
We obtain the first non-trivial time-space tradeoff lower bound for functions f: {0,1}/sup n//spl rarr/{0,1} on general branching programs by exhibiting a Boolean function f that requires exponential size to be computed by any branching program of length (1+/spl epsiv/)n, for some constant /spl epsiv/>0. We also give the first separation result between the syntactic and semantic read-k models for k>1 by showing that polynomial-size semantic read-twice branching programs can compute functions that require exponential size on any syntactic read-k branching program. We also show a time-space tradeoff result on the more general R-way branching program model: for any k, we give a function that requires exponential size to be computed by length kn q-way branching programs, for some q=q(k).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信