{"title":"SLMoS2两相结构的量子启发进化优化","authors":"Wac�aw Ku�, A. Mrózek","doi":"10.7494/cmms.2022.2.0777","DOIUrl":null,"url":null,"abstract":"The paper focuses on applying a Quantum Inspired Evolutionary Algorithm to achieve the optimization of 2D material containing two phases, 2H and 1T, of Molybdenum Disulphide (MoS 2 ). The goal of the optimization is to obtain a nanostructure with tailored mechanical properties. The design variables describe the shape of inclusion made from phase 1T in the 2H unit cell. The modification of the size of the inclusions leads to changes in the mechanical properties. The problem is solved with the use of computed mechanical properties on the basis of the Molecular Statics approach with ReaxFF potentials.","PeriodicalId":401877,"journal":{"name":"Computer Methods in Material Science","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-inspired evolutionary optimization of SLMoS2 two-phase structures\",\"authors\":\"Wac�aw Ku�, A. Mrózek\",\"doi\":\"10.7494/cmms.2022.2.0777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on applying a Quantum Inspired Evolutionary Algorithm to achieve the optimization of 2D material containing two phases, 2H and 1T, of Molybdenum Disulphide (MoS 2 ). The goal of the optimization is to obtain a nanostructure with tailored mechanical properties. The design variables describe the shape of inclusion made from phase 1T in the 2H unit cell. The modification of the size of the inclusions leads to changes in the mechanical properties. The problem is solved with the use of computed mechanical properties on the basis of the Molecular Statics approach with ReaxFF potentials.\",\"PeriodicalId\":401877,\"journal\":{\"name\":\"Computer Methods in Material Science\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/cmms.2022.2.0777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/cmms.2022.2.0777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum-inspired evolutionary optimization of SLMoS2 two-phase structures
The paper focuses on applying a Quantum Inspired Evolutionary Algorithm to achieve the optimization of 2D material containing two phases, 2H and 1T, of Molybdenum Disulphide (MoS 2 ). The goal of the optimization is to obtain a nanostructure with tailored mechanical properties. The design variables describe the shape of inclusion made from phase 1T in the 2H unit cell. The modification of the size of the inclusions leads to changes in the mechanical properties. The problem is solved with the use of computed mechanical properties on the basis of the Molecular Statics approach with ReaxFF potentials.