{"title":"基于多保真代理模型的模型更新策略研究","authors":"Ping Wang, Qingmiao Wang, Xin Yang, Zhenfei Zhan","doi":"10.1115/IMECE2018-88421","DOIUrl":null,"url":null,"abstract":"In vehicle design modeling and simulation, surrogate model is commonly used to replace the high fidelity Finite Element (FE) model. A lot of simulation data from the high-fidelity FE model are utilized to construct an accurate surrogate model requires. However, computational time of FE model increases significantly with the growing complexities of vehicle engineering systems. In order to attain a surrogate model with satisfactory accuracy as well as acceptable computational time, this paper presents a model updated strategy based on multi-fidelity surrogate models. Based on a high-fidelity FE model and a low-fidelity FE model, an accurate multi-fidelity surrogate model is modeled. Firstly, the original full vehicle FE model is simplified to get a sub-model with acceptable accuracy, and it is able to capture the essential behaviors in the vehicle side impact simulations. Next, a primary response surface model (RSM) is built based on the simplified sub-model simulation data. Bayesian inference based bias term is modeled using the difference between the high-fidelity full vehicle FE model simulation data and the primary RSM running results. The bias is then incorporated to update the original RSM. This method can enhance the precision of surrogate model while saving computational time. A real-world side impact vehicle design case is utilized to demonstrate the validity of the proposed strategy.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on a Multi-Fidelity Surrogate Model Based Model Updating Strategy\",\"authors\":\"Ping Wang, Qingmiao Wang, Xin Yang, Zhenfei Zhan\",\"doi\":\"10.1115/IMECE2018-88421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In vehicle design modeling and simulation, surrogate model is commonly used to replace the high fidelity Finite Element (FE) model. A lot of simulation data from the high-fidelity FE model are utilized to construct an accurate surrogate model requires. However, computational time of FE model increases significantly with the growing complexities of vehicle engineering systems. In order to attain a surrogate model with satisfactory accuracy as well as acceptable computational time, this paper presents a model updated strategy based on multi-fidelity surrogate models. Based on a high-fidelity FE model and a low-fidelity FE model, an accurate multi-fidelity surrogate model is modeled. Firstly, the original full vehicle FE model is simplified to get a sub-model with acceptable accuracy, and it is able to capture the essential behaviors in the vehicle side impact simulations. Next, a primary response surface model (RSM) is built based on the simplified sub-model simulation data. Bayesian inference based bias term is modeled using the difference between the high-fidelity full vehicle FE model simulation data and the primary RSM running results. The bias is then incorporated to update the original RSM. This method can enhance the precision of surrogate model while saving computational time. A real-world side impact vehicle design case is utilized to demonstrate the validity of the proposed strategy.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-88421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on a Multi-Fidelity Surrogate Model Based Model Updating Strategy
In vehicle design modeling and simulation, surrogate model is commonly used to replace the high fidelity Finite Element (FE) model. A lot of simulation data from the high-fidelity FE model are utilized to construct an accurate surrogate model requires. However, computational time of FE model increases significantly with the growing complexities of vehicle engineering systems. In order to attain a surrogate model with satisfactory accuracy as well as acceptable computational time, this paper presents a model updated strategy based on multi-fidelity surrogate models. Based on a high-fidelity FE model and a low-fidelity FE model, an accurate multi-fidelity surrogate model is modeled. Firstly, the original full vehicle FE model is simplified to get a sub-model with acceptable accuracy, and it is able to capture the essential behaviors in the vehicle side impact simulations. Next, a primary response surface model (RSM) is built based on the simplified sub-model simulation data. Bayesian inference based bias term is modeled using the difference between the high-fidelity full vehicle FE model simulation data and the primary RSM running results. The bias is then incorporated to update the original RSM. This method can enhance the precision of surrogate model while saving computational time. A real-world side impact vehicle design case is utilized to demonstrate the validity of the proposed strategy.