R. Austin, N. Mahadevan, B. Sierawski, G. Karsai, A. Witulski, John W. Evans
{"title":"使用目标结构符号的立方体卫星有效载荷辐射可靠性保证案例","authors":"R. Austin, N. Mahadevan, B. Sierawski, G. Karsai, A. Witulski, John W. Evans","doi":"10.1109/RAM.2017.7889672","DOIUrl":null,"url":null,"abstract":"CubeSats have become an attractive platform for universities, industry, and government space missions because they are cheaper and quicker to develop than full-scale satellites. One way CubeSats keep costs low is by using commercial off-the-shelf parts (COTS) instead of space-qualified parts. Space-qualified parts are often costlier, larger, and consume more power than their commercial counterparts precluding their use within the CubeSat form-factor. Given typical power budgets, monetary budgets, and timelines for CubeSat missions, conventional radiation hardness assurance, like the use of space-qualified parts and radiation testing campaigns of COTS parts, is not practical. Instead, a system-level approach to radiation effects mitigation is needed. In this paper an assurance case for a system-level approach to mitigate radiation effects of a CubeSat science experiment is expressed using Goal Structuring Notation (GSN), a graphical argument standard. The case specifically looks at three main mitigation strategies for the radiation environment: total ionizing dose (TID) screening of parts, detection and recovery from single-event latch-ups (SEL) and single-event functional interrupts (SEFI). The graphical assurance case presented makes a qualitative argument for the radiation reliability of the CubeSat experiment using part and system-level mitigation strategies.","PeriodicalId":138871,"journal":{"name":"2017 Annual Reliability and Maintainability Symposium (RAMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A CubeSat-payload radiation-reliability assurance case using goal structuring notation\",\"authors\":\"R. Austin, N. Mahadevan, B. Sierawski, G. Karsai, A. Witulski, John W. Evans\",\"doi\":\"10.1109/RAM.2017.7889672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CubeSats have become an attractive platform for universities, industry, and government space missions because they are cheaper and quicker to develop than full-scale satellites. One way CubeSats keep costs low is by using commercial off-the-shelf parts (COTS) instead of space-qualified parts. Space-qualified parts are often costlier, larger, and consume more power than their commercial counterparts precluding their use within the CubeSat form-factor. Given typical power budgets, monetary budgets, and timelines for CubeSat missions, conventional radiation hardness assurance, like the use of space-qualified parts and radiation testing campaigns of COTS parts, is not practical. Instead, a system-level approach to radiation effects mitigation is needed. In this paper an assurance case for a system-level approach to mitigate radiation effects of a CubeSat science experiment is expressed using Goal Structuring Notation (GSN), a graphical argument standard. The case specifically looks at three main mitigation strategies for the radiation environment: total ionizing dose (TID) screening of parts, detection and recovery from single-event latch-ups (SEL) and single-event functional interrupts (SEFI). The graphical assurance case presented makes a qualitative argument for the radiation reliability of the CubeSat experiment using part and system-level mitigation strategies.\",\"PeriodicalId\":138871,\"journal\":{\"name\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAM.2017.7889672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAM.2017.7889672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CubeSat-payload radiation-reliability assurance case using goal structuring notation
CubeSats have become an attractive platform for universities, industry, and government space missions because they are cheaper and quicker to develop than full-scale satellites. One way CubeSats keep costs low is by using commercial off-the-shelf parts (COTS) instead of space-qualified parts. Space-qualified parts are often costlier, larger, and consume more power than their commercial counterparts precluding their use within the CubeSat form-factor. Given typical power budgets, monetary budgets, and timelines for CubeSat missions, conventional radiation hardness assurance, like the use of space-qualified parts and radiation testing campaigns of COTS parts, is not practical. Instead, a system-level approach to radiation effects mitigation is needed. In this paper an assurance case for a system-level approach to mitigate radiation effects of a CubeSat science experiment is expressed using Goal Structuring Notation (GSN), a graphical argument standard. The case specifically looks at three main mitigation strategies for the radiation environment: total ionizing dose (TID) screening of parts, detection and recovery from single-event latch-ups (SEL) and single-event functional interrupts (SEFI). The graphical assurance case presented makes a qualitative argument for the radiation reliability of the CubeSat experiment using part and system-level mitigation strategies.