高光谱图像的半监督支持向量机分类

F. Mianji, Ye Zhang
{"title":"高光谱图像的半监督支持向量机分类","authors":"F. Mianji, Ye Zhang","doi":"10.1109/ICCSP.2011.5739328","DOIUrl":null,"url":null,"abstract":"Variety of techniques with the capability of being applied on original data spaces has been developed for hyperspectral (HS) classification. Among them, support vector machine (SVM) presents a high classification accuracy, however, its performance for too small ratios of number of available training samples to number of features is relatively low due to the Hughes effect. This paper proposes a new semisupervised approach through combining appropriate discriminant data transforms such as principal component analysis with SVM to tackle the above mentioned drawback. The experiments on real HS data validate the superiority of the proposed combined approach over the traditional pure SVM technique.","PeriodicalId":408736,"journal":{"name":"2011 International Conference on Communications and Signal Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semisupervised support vector machine classification for hyperspectral imagery\",\"authors\":\"F. Mianji, Ye Zhang\",\"doi\":\"10.1109/ICCSP.2011.5739328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variety of techniques with the capability of being applied on original data spaces has been developed for hyperspectral (HS) classification. Among them, support vector machine (SVM) presents a high classification accuracy, however, its performance for too small ratios of number of available training samples to number of features is relatively low due to the Hughes effect. This paper proposes a new semisupervised approach through combining appropriate discriminant data transforms such as principal component analysis with SVM to tackle the above mentioned drawback. The experiments on real HS data validate the superiority of the proposed combined approach over the traditional pure SVM technique.\",\"PeriodicalId\":408736,\"journal\":{\"name\":\"2011 International Conference on Communications and Signal Processing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2011.5739328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2011.5739328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高光谱(HS)分类已经发展出多种能够应用于原始数据空间的技术。其中,支持向量机(SVM)具有较高的分类精度,但由于休斯效应,在可用训练样本数量与特征数量之比过小时,其分类性能较低。本文通过将主成分分析等适当的判别数据变换与支持向量机相结合,提出了一种新的半监督方法来解决上述缺陷。在真实HS数据上的实验验证了该组合方法相对于传统的纯支持向量机技术的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semisupervised support vector machine classification for hyperspectral imagery
Variety of techniques with the capability of being applied on original data spaces has been developed for hyperspectral (HS) classification. Among them, support vector machine (SVM) presents a high classification accuracy, however, its performance for too small ratios of number of available training samples to number of features is relatively low due to the Hughes effect. This paper proposes a new semisupervised approach through combining appropriate discriminant data transforms such as principal component analysis with SVM to tackle the above mentioned drawback. The experiments on real HS data validate the superiority of the proposed combined approach over the traditional pure SVM technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信