基于同态加密的移动数据使用预测相似度计算

Abel C. H. Chen, Chia-Yu Lin, Yueh-Ting Lai
{"title":"基于同态加密的移动数据使用预测相似度计算","authors":"Abel C. H. Chen, Chia-Yu Lin, Yueh-Ting Lai","doi":"10.1109/ICCE-Taiwan58799.2023.10226978","DOIUrl":null,"url":null,"abstract":"For improving security, this study proposes a mobile data usage prediction method based on homomorphic encryption (HE)-based similarity calculation without plaintext storage. The cosine similarity, angular similarity, Tanimoto similarity, and Euclidean similarity based on HE according to ElGamal cryptography are proposed and combined in a machine learning method to consider the mobile data usage during the last periods for predicting the mobile data usage during the next period.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"408 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homomorphic Encryption-Based Similarity Calculation for Mobile Data Usage Prediction\",\"authors\":\"Abel C. H. Chen, Chia-Yu Lin, Yueh-Ting Lai\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10226978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For improving security, this study proposes a mobile data usage prediction method based on homomorphic encryption (HE)-based similarity calculation without plaintext storage. The cosine similarity, angular similarity, Tanimoto similarity, and Euclidean similarity based on HE according to ElGamal cryptography are proposed and combined in a machine learning method to consider the mobile data usage during the last periods for predicting the mobile data usage during the next period.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"408 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高安全性,本研究提出了一种不使用明文存储的基于同态加密(HE)的相似度计算的移动数据使用预测方法。提出了基于ElGamal密码学的基于HE的余弦相似度、角相似度、谷本相似度和欧几里得相似度,并结合机器学习方法考虑上一时段的移动数据使用情况,以预测下一时段的移动数据使用情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homomorphic Encryption-Based Similarity Calculation for Mobile Data Usage Prediction
For improving security, this study proposes a mobile data usage prediction method based on homomorphic encryption (HE)-based similarity calculation without plaintext storage. The cosine similarity, angular similarity, Tanimoto similarity, and Euclidean similarity based on HE according to ElGamal cryptography are proposed and combined in a machine learning method to consider the mobile data usage during the last periods for predicting the mobile data usage during the next period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信