一类随机动态团队的联合估计与控制

R. Bansal, T. Başar
{"title":"一类随机动态团队的联合估计与控制","authors":"R. Bansal, T. Başar","doi":"10.1109/CDC.1988.194664","DOIUrl":null,"url":null,"abstract":"The authors formulate and solve an infinite-horizon stochastic optimization problem where both the control and the measurement strategies are to be designed simultaneously, under a quadratic performance index. The complete solution to the infinite-horizon problem is provided, the existence of optimal stationary policies is established, and an algorithm for the numerical computation of these policies is given. Thus linear stationary policies are overall optimal and can be obtained from the solution of an infinite-horizon nonlinear deterministic optimal control problem.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint estimation and control for a class of stochastic dynamic teams\",\"authors\":\"R. Bansal, T. Başar\",\"doi\":\"10.1109/CDC.1988.194664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors formulate and solve an infinite-horizon stochastic optimization problem where both the control and the measurement strategies are to be designed simultaneously, under a quadratic performance index. The complete solution to the infinite-horizon problem is provided, the existence of optimal stationary policies is established, and an algorithm for the numerical computation of these policies is given. Thus linear stationary policies are overall optimal and can be obtained from the solution of an infinite-horizon nonlinear deterministic optimal control problem.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在二次型性能指标下,提出并求解了控制策略和测量策略同时设计的无限水平随机优化问题。给出了无限视界问题的完全解,建立了最优平稳策略的存在性,并给出了这些策略的数值计算算法。因此,线性平稳策略是整体最优的,并且可以从无穷视界非线性确定性最优控制问题的解中得到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint estimation and control for a class of stochastic dynamic teams
The authors formulate and solve an infinite-horizon stochastic optimization problem where both the control and the measurement strategies are to be designed simultaneously, under a quadratic performance index. The complete solution to the infinite-horizon problem is provided, the existence of optimal stationary policies is established, and an algorithm for the numerical computation of these policies is given. Thus linear stationary policies are overall optimal and can be obtained from the solution of an infinite-horizon nonlinear deterministic optimal control problem.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信