{"title":"风力发电机故障检测的振动分析:监督机器学习技术的新方法","authors":"Javier Vives","doi":"10.20855/ijav.2022.27.21836","DOIUrl":null,"url":null,"abstract":"The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degeneration of any electrical and mechanical components present in a wind turbine. In this paper, two different failure states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classifiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore.","PeriodicalId":131358,"journal":{"name":"The International Journal of Acoustics and Vibration","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration Analysis for Fault Detection of Wind Turbine: New Methodology of Supervised Machine Learning Techniques\",\"authors\":\"Javier Vives\",\"doi\":\"10.20855/ijav.2022.27.21836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degeneration of any electrical and mechanical components present in a wind turbine. In this paper, two different failure states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classifiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore.\",\"PeriodicalId\":131358,\"journal\":{\"name\":\"The International Journal of Acoustics and Vibration\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20855/ijav.2022.27.21836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20855/ijav.2022.27.21836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibration Analysis for Fault Detection of Wind Turbine: New Methodology of Supervised Machine Learning Techniques
The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degeneration of any electrical and mechanical components present in a wind turbine. In this paper, two different failure states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classifiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore.