NOC设计空间中触发器优化和表征的新方法

S. Tiwari, Kunwar Singh, Maneesha Gupta
{"title":"NOC设计空间中触发器优化和表征的新方法","authors":"S. Tiwari, Kunwar Singh, Maneesha Gupta","doi":"10.1109/WICT.2011.6141253","DOIUrl":null,"url":null,"abstract":"The paper proposes a new methodology for optimization and characterization of flip-flops that can be utilized in designing EDA tool for NOC. In automated RTL to GDS II design space there is requirement of libraries with large number of cells. Now each design can have large number of different driving strength cells. Hence the paper proposes a methodology by virtue of which the library size can be reduced while reducing complexity. The proposed approach utilizes Levenberg-Marquardt (LM) algorithm embedded in SPICE. The optimization and characterization process is entirely automated which can dramatically reduce the time required for digital integrated circuit design process. Moreover, a new flip-flop for low noise environment is proposed and compared with benchmark flip-flops using the proposed methodology. To obtain the relative performance of proposed designs with in specified design constraints, extensive spice simulations were performed using 180nm technology with BSIM 3v3 parameters and 250MHz clock frequency. The automated layouts were also generated and post layout simulation with RC extraction were executed using Mentor Graphics tool.","PeriodicalId":178645,"journal":{"name":"2011 World Congress on Information and Communication Technologies","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel methodology for flip-flop optimization and characterization in NOC design space\",\"authors\":\"S. Tiwari, Kunwar Singh, Maneesha Gupta\",\"doi\":\"10.1109/WICT.2011.6141253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a new methodology for optimization and characterization of flip-flops that can be utilized in designing EDA tool for NOC. In automated RTL to GDS II design space there is requirement of libraries with large number of cells. Now each design can have large number of different driving strength cells. Hence the paper proposes a methodology by virtue of which the library size can be reduced while reducing complexity. The proposed approach utilizes Levenberg-Marquardt (LM) algorithm embedded in SPICE. The optimization and characterization process is entirely automated which can dramatically reduce the time required for digital integrated circuit design process. Moreover, a new flip-flop for low noise environment is proposed and compared with benchmark flip-flops using the proposed methodology. To obtain the relative performance of proposed designs with in specified design constraints, extensive spice simulations were performed using 180nm technology with BSIM 3v3 parameters and 250MHz clock frequency. The automated layouts were also generated and post layout simulation with RC extraction were executed using Mentor Graphics tool.\",\"PeriodicalId\":178645,\"journal\":{\"name\":\"2011 World Congress on Information and Communication Technologies\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 World Congress on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WICT.2011.6141253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2011.6141253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的触发器优化和表征方法,可用于NOC EDA工具的设计。在自动化RTL到GDS II的设计空间中,需要大量的单元库。现在每个设计都可以有大量不同的驱动强度单元。因此,本文提出了一种方法,通过这种方法可以减少库的大小,同时降低复杂性。该方法利用SPICE中嵌入的Levenberg-Marquardt (LM)算法。优化和表征过程完全自动化,可以大大减少数字集成电路设计过程所需的时间。此外,提出了一种新的低噪声环境触发器,并使用该方法与基准触发器进行了比较。为了获得在特定设计约束条件下提出的设计的相对性能,使用180nm技术和BSIM 3v3参数和250MHz时钟频率进行了广泛的spice模拟。生成了自动布局,并使用Mentor Graphics工具进行了带RC提取的后期布局仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel methodology for flip-flop optimization and characterization in NOC design space
The paper proposes a new methodology for optimization and characterization of flip-flops that can be utilized in designing EDA tool for NOC. In automated RTL to GDS II design space there is requirement of libraries with large number of cells. Now each design can have large number of different driving strength cells. Hence the paper proposes a methodology by virtue of which the library size can be reduced while reducing complexity. The proposed approach utilizes Levenberg-Marquardt (LM) algorithm embedded in SPICE. The optimization and characterization process is entirely automated which can dramatically reduce the time required for digital integrated circuit design process. Moreover, a new flip-flop for low noise environment is proposed and compared with benchmark flip-flops using the proposed methodology. To obtain the relative performance of proposed designs with in specified design constraints, extensive spice simulations were performed using 180nm technology with BSIM 3v3 parameters and 250MHz clock frequency. The automated layouts were also generated and post layout simulation with RC extraction were executed using Mentor Graphics tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信