线性规划近似二次型0-1最大化问题

ACM-SE 35 Pub Date : 1997-04-02 DOI:10.1145/2817460.2817503
A. Billionnet, Frédéric Roupin
{"title":"线性规划近似二次型0-1最大化问题","authors":"A. Billionnet, Frédéric Roupin","doi":"10.1145/2817460.2817503","DOIUrl":null,"url":null,"abstract":"Many authors have used the continuous relaxation of linear formulations of quadratic 0-1 optimization problems subject to linear constraints in order to obtain a bound of the optimal value by linear programming. But usually, optimal solutions are non-integer vectors, and thus are not feasible for the 0-1 problem. In this paper, we propose a based linear programming scheme to try to build ε-approximate polynomial time algorithms for any quadratic 0-1 maximization problems subject to linear constraints. By using this scheme, we obtain ε-approximate polynomial-time algorithms for several basic problems : the maximization of an unconstrained quadratic posiform, an assignment problem which contains k-max-cut as a particular case, k-max-cut, the k-cluster problem on bipartite graphs, and the bipartitioning problem (max-cut with a set of cardinal k).","PeriodicalId":274966,"journal":{"name":"ACM-SE 35","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear programming to approximate quadratic 0-1 maximization problems\",\"authors\":\"A. Billionnet, Frédéric Roupin\",\"doi\":\"10.1145/2817460.2817503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many authors have used the continuous relaxation of linear formulations of quadratic 0-1 optimization problems subject to linear constraints in order to obtain a bound of the optimal value by linear programming. But usually, optimal solutions are non-integer vectors, and thus are not feasible for the 0-1 problem. In this paper, we propose a based linear programming scheme to try to build ε-approximate polynomial time algorithms for any quadratic 0-1 maximization problems subject to linear constraints. By using this scheme, we obtain ε-approximate polynomial-time algorithms for several basic problems : the maximization of an unconstrained quadratic posiform, an assignment problem which contains k-max-cut as a particular case, k-max-cut, the k-cluster problem on bipartite graphs, and the bipartitioning problem (max-cut with a set of cardinal k).\",\"PeriodicalId\":274966,\"journal\":{\"name\":\"ACM-SE 35\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-SE 35\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2817460.2817503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 35","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2817460.2817503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多作者利用线性约束下的二次0-1优化问题线性公式的连续松弛,通过线性规划得到最优值的界。但通常,最优解是非整数向量,因此对于0-1问题是不可行的。在本文中,我们提出了一个基于线性规划的方案,试图建立ε-近似多项式时间算法的任何二次0-1最大化问题的线性约束。利用该格式,我们得到了若干基本问题的ε-近似多项式时间算法:无约束二次正形的最大化问题、包含k-max-cut为特殊情况的赋值问题、k-max-cut问题、二部图上的k-聚类问题和二分区问题(基数为k的集的max-cut)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear programming to approximate quadratic 0-1 maximization problems
Many authors have used the continuous relaxation of linear formulations of quadratic 0-1 optimization problems subject to linear constraints in order to obtain a bound of the optimal value by linear programming. But usually, optimal solutions are non-integer vectors, and thus are not feasible for the 0-1 problem. In this paper, we propose a based linear programming scheme to try to build ε-approximate polynomial time algorithms for any quadratic 0-1 maximization problems subject to linear constraints. By using this scheme, we obtain ε-approximate polynomial-time algorithms for several basic problems : the maximization of an unconstrained quadratic posiform, an assignment problem which contains k-max-cut as a particular case, k-max-cut, the k-cluster problem on bipartite graphs, and the bipartitioning problem (max-cut with a set of cardinal k).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信