MaxSimE:通过上下文化的最佳匹配令牌对解释基于转换器的语义相似性

E. Brito, Henri Iser
{"title":"MaxSimE:通过上下文化的最佳匹配令牌对解释基于转换器的语义相似性","authors":"E. Brito, Henri Iser","doi":"10.1145/3539618.3592017","DOIUrl":null,"url":null,"abstract":"Current semantic search approaches rely on black-box language models, such as BERT, which limit their interpretability and transparency. In this work, we propose MaxSimE, an explanation method for language models applied to measure semantic similarity. Our approach is inspired by the explainable-by-design ColBERT architecture and generates explanations by matching contextualized query tokens to the most similar tokens from the retrieved document according to the cosine similarity of their embeddings. Unlike existing post-hoc explanation methods, which may lack fidelity to the model and thus fail to provide trustworthy explanations in critical settings, we demonstrate that MaxSimE can generate faithful explanations under certain conditions and how it improves the interpretability of semantic search results on ranked documents from the LoTTe benchmark, showing its potential for trustworthy information retrieval.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"39 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MaxSimE: Explaining Transformer-based Semantic Similarity via Contextualized Best Matching Token Pairs\",\"authors\":\"E. Brito, Henri Iser\",\"doi\":\"10.1145/3539618.3592017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current semantic search approaches rely on black-box language models, such as BERT, which limit their interpretability and transparency. In this work, we propose MaxSimE, an explanation method for language models applied to measure semantic similarity. Our approach is inspired by the explainable-by-design ColBERT architecture and generates explanations by matching contextualized query tokens to the most similar tokens from the retrieved document according to the cosine similarity of their embeddings. Unlike existing post-hoc explanation methods, which may lack fidelity to the model and thus fail to provide trustworthy explanations in critical settings, we demonstrate that MaxSimE can generate faithful explanations under certain conditions and how it improves the interpretability of semantic search results on ranked documents from the LoTTe benchmark, showing its potential for trustworthy information retrieval.\",\"PeriodicalId\":425056,\"journal\":{\"name\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"39 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539618.3592017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3592017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的语义搜索方法依赖于黑盒语言模型,如BERT,这限制了它们的可解释性和透明度。在这项工作中,我们提出了MaxSimE,一种用于测量语义相似度的语言模型的解释方法。我们的方法受到可解释设计的ColBERT架构的启发,并通过根据其嵌入的余弦相似度将上下文化查询令牌与检索文档中最相似的令牌匹配来生成解释。现有的post-hoc解释方法可能缺乏对模型的保真度,因此无法在关键设置中提供可信的解释,与此不同,我们证明了MaxSimE可以在某些条件下生成可信的解释,以及它如何提高来自LoTTe基准的排名文档的语义搜索结果的可解释性,显示了它在可信信息检索方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MaxSimE: Explaining Transformer-based Semantic Similarity via Contextualized Best Matching Token Pairs
Current semantic search approaches rely on black-box language models, such as BERT, which limit their interpretability and transparency. In this work, we propose MaxSimE, an explanation method for language models applied to measure semantic similarity. Our approach is inspired by the explainable-by-design ColBERT architecture and generates explanations by matching contextualized query tokens to the most similar tokens from the retrieved document according to the cosine similarity of their embeddings. Unlike existing post-hoc explanation methods, which may lack fidelity to the model and thus fail to provide trustworthy explanations in critical settings, we demonstrate that MaxSimE can generate faithful explanations under certain conditions and how it improves the interpretability of semantic search results on ranked documents from the LoTTe benchmark, showing its potential for trustworthy information retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信