用于预测LTE网络蜂窝拥塞的数据分析

Pedro M. B. Torres, P. Marques, Hugo Marques, Rogerio Dionisio, Tiago Alves, Luis Pereira, J. Ribeiro
{"title":"用于预测LTE网络蜂窝拥塞的数据分析","authors":"Pedro M. B. Torres, P. Marques, Hugo Marques, Rogerio Dionisio, Tiago Alves, Luis Pereira, J. Ribeiro","doi":"10.23919/TMA.2017.8002917","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for forecasting the average downlink throughput for an LTE cell by using real measurement data collected by multiple LTE probes. The approach uses data analytics techniques, namely forecasting algorithms to anticipate cell congestion events which can then be used by Self-Organizing Network (SON) strategies for triggering network re-configurations, such as shifting coverage and capacity to areas where they are most needed, before subscribers have been impacted by dropped calls or reduced data speeds. The presented implementation results show the prediction of network behaviour is possible with a high level of accuracy, effectively allowing SON strategies to be enforced in time.","PeriodicalId":118082,"journal":{"name":"2017 Network Traffic Measurement and Analysis Conference (TMA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Data analytics for forecasting cell congestion on LTE networks\",\"authors\":\"Pedro M. B. Torres, P. Marques, Hugo Marques, Rogerio Dionisio, Tiago Alves, Luis Pereira, J. Ribeiro\",\"doi\":\"10.23919/TMA.2017.8002917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for forecasting the average downlink throughput for an LTE cell by using real measurement data collected by multiple LTE probes. The approach uses data analytics techniques, namely forecasting algorithms to anticipate cell congestion events which can then be used by Self-Organizing Network (SON) strategies for triggering network re-configurations, such as shifting coverage and capacity to areas where they are most needed, before subscribers have been impacted by dropped calls or reduced data speeds. The presented implementation results show the prediction of network behaviour is possible with a high level of accuracy, effectively allowing SON strategies to be enforced in time.\",\"PeriodicalId\":118082,\"journal\":{\"name\":\"2017 Network Traffic Measurement and Analysis Conference (TMA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Network Traffic Measurement and Analysis Conference (TMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/TMA.2017.8002917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2017.8002917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种利用多个LTE探测器收集的实际测量数据预测LTE小区平均下行链路吞吐量的方法。该方法使用数据分析技术,即预测算法来预测蜂窝拥塞事件,然后可用于自组织网络(SON)策略来触发网络重新配置,例如在用户受到掉线或数据速度降低的影响之前将覆盖范围和容量转移到最需要的区域。所提出的实现结果表明,网络行为的预测是可能的,具有很高的准确性,有效地允许及时执行SON策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data analytics for forecasting cell congestion on LTE networks
This paper presents a methodology for forecasting the average downlink throughput for an LTE cell by using real measurement data collected by multiple LTE probes. The approach uses data analytics techniques, namely forecasting algorithms to anticipate cell congestion events which can then be used by Self-Organizing Network (SON) strategies for triggering network re-configurations, such as shifting coverage and capacity to areas where they are most needed, before subscribers have been impacted by dropped calls or reduced data speeds. The presented implementation results show the prediction of network behaviour is possible with a high level of accuracy, effectively allowing SON strategies to be enforced in time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信