{"title":"第78届玻璃问题会议","authors":"C. Drummond, A. Huber","doi":"10.1002/9781119519713","DOIUrl":null,"url":null,"abstract":"Production of glass bottles requires blowing of the glass after entrance of a gob of molten glass in the blank mould. The final shape of the bottle is highly dependent on the viscosity of the glass, the blowpressure and the temperature distribution in the glass and the mould and simulation of this complicated process enables optimization of the process conditions. During simulation of blowing of the glass, the mesh has to be adapted due to the extreme deformations of the mesh. Using the existing ALEtechnique for this kind of applications requires a lot of user-intervention and trial-and-error to create a mesh that suits both the initial and final topology of the glass. To reduce the user-time and to be able to run this kind of analyses automatically based on an arbitrary base-geometry, a completely automated remeshing/rezoning procedure is set-up. In this procedure the A/Explicit analysis is divided in a number of sub-analyses after each of which a new (3D) geometry of the glass is created based on the deformed mesh (using Galileo+CAE). Using a map-routine the solution from the previous analysis is mapped on the new mesh such that continuation of results is ensured. Using the automated remeshing capability, simulations of the glass bottle forming process have successfully been performed, enabling for example optimization of process settings. Due to the generic set-up of the remeshing procedure it can easily be used for other simulations that require adaptive meshing as well.","PeriodicalId":150695,"journal":{"name":"Ceramic Engineering and Science Proceedings","volume":"407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"78th Conference on Glass Problems\",\"authors\":\"C. Drummond, A. Huber\",\"doi\":\"10.1002/9781119519713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production of glass bottles requires blowing of the glass after entrance of a gob of molten glass in the blank mould. The final shape of the bottle is highly dependent on the viscosity of the glass, the blowpressure and the temperature distribution in the glass and the mould and simulation of this complicated process enables optimization of the process conditions. During simulation of blowing of the glass, the mesh has to be adapted due to the extreme deformations of the mesh. Using the existing ALEtechnique for this kind of applications requires a lot of user-intervention and trial-and-error to create a mesh that suits both the initial and final topology of the glass. To reduce the user-time and to be able to run this kind of analyses automatically based on an arbitrary base-geometry, a completely automated remeshing/rezoning procedure is set-up. In this procedure the A/Explicit analysis is divided in a number of sub-analyses after each of which a new (3D) geometry of the glass is created based on the deformed mesh (using Galileo+CAE). Using a map-routine the solution from the previous analysis is mapped on the new mesh such that continuation of results is ensured. Using the automated remeshing capability, simulations of the glass bottle forming process have successfully been performed, enabling for example optimization of process settings. Due to the generic set-up of the remeshing procedure it can easily be used for other simulations that require adaptive meshing as well.\",\"PeriodicalId\":150695,\"journal\":{\"name\":\"Ceramic Engineering and Science Proceedings\",\"volume\":\"407 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramic Engineering and Science Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119519713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramic Engineering and Science Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119519713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production of glass bottles requires blowing of the glass after entrance of a gob of molten glass in the blank mould. The final shape of the bottle is highly dependent on the viscosity of the glass, the blowpressure and the temperature distribution in the glass and the mould and simulation of this complicated process enables optimization of the process conditions. During simulation of blowing of the glass, the mesh has to be adapted due to the extreme deformations of the mesh. Using the existing ALEtechnique for this kind of applications requires a lot of user-intervention and trial-and-error to create a mesh that suits both the initial and final topology of the glass. To reduce the user-time and to be able to run this kind of analyses automatically based on an arbitrary base-geometry, a completely automated remeshing/rezoning procedure is set-up. In this procedure the A/Explicit analysis is divided in a number of sub-analyses after each of which a new (3D) geometry of the glass is created based on the deformed mesh (using Galileo+CAE). Using a map-routine the solution from the previous analysis is mapped on the new mesh such that continuation of results is ensured. Using the automated remeshing capability, simulations of the glass bottle forming process have successfully been performed, enabling for example optimization of process settings. Due to the generic set-up of the remeshing procedure it can easily be used for other simulations that require adaptive meshing as well.