{"title":"基于运动结构的大尺度环境三维无人机配准","authors":"J. Velagić, Haris Balta","doi":"10.1109/ICAT54566.2022.9811227","DOIUrl":null,"url":null,"abstract":"This paper treats the problem of 3D outdoor environment mapping using images acquired by Unmanned Aerial Vehicle (UAV). The main focus is on the generation of 3D model for large scale environments. In order to perform 3D model reconstruction and mapping from 2D aerial images we employed a Structure from Motion (SfM) based approach. The obtained results using this approach for different scenarios, the rubble field and village, are presented. The generated UAV 3D point cloud data are compared with the ground truth using the least square method, where the ground truth represents a reference model with high accuracy geodetic precision. The comparison of the 3D environment models with the rubble field and village scenarios and the ground truth data is also given.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D UAV Registration of Large Scale Environment Using Structure From Motion Based Approach\",\"authors\":\"J. Velagić, Haris Balta\",\"doi\":\"10.1109/ICAT54566.2022.9811227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper treats the problem of 3D outdoor environment mapping using images acquired by Unmanned Aerial Vehicle (UAV). The main focus is on the generation of 3D model for large scale environments. In order to perform 3D model reconstruction and mapping from 2D aerial images we employed a Structure from Motion (SfM) based approach. The obtained results using this approach for different scenarios, the rubble field and village, are presented. The generated UAV 3D point cloud data are compared with the ground truth using the least square method, where the ground truth represents a reference model with high accuracy geodetic precision. The comparison of the 3D environment models with the rubble field and village scenarios and the ground truth data is also given.\",\"PeriodicalId\":414786,\"journal\":{\"name\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT54566.2022.9811227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D UAV Registration of Large Scale Environment Using Structure From Motion Based Approach
This paper treats the problem of 3D outdoor environment mapping using images acquired by Unmanned Aerial Vehicle (UAV). The main focus is on the generation of 3D model for large scale environments. In order to perform 3D model reconstruction and mapping from 2D aerial images we employed a Structure from Motion (SfM) based approach. The obtained results using this approach for different scenarios, the rubble field and village, are presented. The generated UAV 3D point cloud data are compared with the ground truth using the least square method, where the ground truth represents a reference model with high accuracy geodetic precision. The comparison of the 3D environment models with the rubble field and village scenarios and the ground truth data is also given.