研究VR运动头戴式显示器中的稀疏外围显示

Abraham M. Hashemian, Alexandra Kitson, Thinh Nguyen-Vo, Hrvoje Benko, W. Stuerzlinger, B. Riecke
{"title":"研究VR运动头戴式显示器中的稀疏外围显示","authors":"Abraham M. Hashemian, Alexandra Kitson, Thinh Nguyen-Vo, Hrvoje Benko, W. Stuerzlinger, B. Riecke","doi":"10.1109/VR.2018.8446345","DOIUrl":null,"url":null,"abstract":"Head-Mounted Displays (HMDs) provide immersive experiences for virtual reality. However, their field of view (FOV) is still relatively small compared to the human eye, which adding sparse peripheral displays (SPDs) could address. We designed a new SPD, SparseLightVR2, which increases the HMD's FOV to 180° horizontally. We evaluated SparseLightVR2 with a study (N=29) by comparing three conditions: 1) no SPD, where the peripheral display (PD) was inactive; 2) extended SPD, where the PD provided visual cues consistent with and extending the HMD's main screen; and 3) counter-vection SPD, where the PD's visuals were flipped horizontally during VR travel to provide optic flow in the opposite direction of the travel. The participants experienced passive motion on a linear path and reported introspective measures such as sensation of self-motion. Results showed, compared to no SPD, both extended and counter-vection SPDs provided a more natural experience of motion, while extended SPD also enhanced vection intensity and believability of movement. Yet, visually induced motion sickness (VIMS) was not affected by display condition. To investigate the reason behind these non-significant results, we conducted a follow-up study and had users increase peripheral counter-vection visuals on the central HMD screen until they nulled out vection. Our results suggest extending HMDs through SPDs enhanced vection, naturalness, and believability of movement without enhancing VIMS, but reversed SPD motion cues might not be strong enough to reduce vection and VIMS.","PeriodicalId":355048,"journal":{"name":"2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigating a Sparse Peripheral Display in a Head-Mounted Display for VR Locomotion\",\"authors\":\"Abraham M. Hashemian, Alexandra Kitson, Thinh Nguyen-Vo, Hrvoje Benko, W. Stuerzlinger, B. Riecke\",\"doi\":\"10.1109/VR.2018.8446345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Head-Mounted Displays (HMDs) provide immersive experiences for virtual reality. However, their field of view (FOV) is still relatively small compared to the human eye, which adding sparse peripheral displays (SPDs) could address. We designed a new SPD, SparseLightVR2, which increases the HMD's FOV to 180° horizontally. We evaluated SparseLightVR2 with a study (N=29) by comparing three conditions: 1) no SPD, where the peripheral display (PD) was inactive; 2) extended SPD, where the PD provided visual cues consistent with and extending the HMD's main screen; and 3) counter-vection SPD, where the PD's visuals were flipped horizontally during VR travel to provide optic flow in the opposite direction of the travel. The participants experienced passive motion on a linear path and reported introspective measures such as sensation of self-motion. Results showed, compared to no SPD, both extended and counter-vection SPDs provided a more natural experience of motion, while extended SPD also enhanced vection intensity and believability of movement. Yet, visually induced motion sickness (VIMS) was not affected by display condition. To investigate the reason behind these non-significant results, we conducted a follow-up study and had users increase peripheral counter-vection visuals on the central HMD screen until they nulled out vection. Our results suggest extending HMDs through SPDs enhanced vection, naturalness, and believability of movement without enhancing VIMS, but reversed SPD motion cues might not be strong enough to reduce vection and VIMS.\",\"PeriodicalId\":355048,\"journal\":{\"name\":\"2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2018.8446345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2018.8446345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

头戴式显示器(hmd)为虚拟现实提供身临其境的体验。然而,与人眼相比,它们的视野(FOV)仍然相对较小,添加稀疏周边显示器(spd)可以解决这个问题。我们设计了一个新的SPD, SparseLightVR2,它将HMD的FOV水平增加到180°。我们对SparseLightVR2进行了一项研究(N=29),通过比较三种情况来评估:1)没有SPD,其中外围显示(PD)不活跃;2)扩展SPD,其中PD提供与HMD主屏幕一致并扩展的视觉提示;3)反向SPD,其中PD的视觉在VR旅行期间水平翻转,以提供与旅行相反方向的光流。参与者在线性路径上经历被动运动,并报告自省测量,如自我运动的感觉。结果显示,与无SPD相比,伸展SPD和反向SPD均能提供更自然的运动体验,而伸展SPD还能增强运动强度和可信度。然而,视动病(VIMS)不受显示条件的影响。为了调查这些不显著结果背后的原因,我们进行了一项后续研究,并让用户在HMD中央屏幕上增加外围反矢量视觉效果,直到他们取消矢量。我们的研究结果表明,通过SPD延长hmd可以增强运动的矢量、自然度和可信度,但不会增强VIMS,但反向SPD运动线索可能不足以减弱矢量和VIMS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating a Sparse Peripheral Display in a Head-Mounted Display for VR Locomotion
Head-Mounted Displays (HMDs) provide immersive experiences for virtual reality. However, their field of view (FOV) is still relatively small compared to the human eye, which adding sparse peripheral displays (SPDs) could address. We designed a new SPD, SparseLightVR2, which increases the HMD's FOV to 180° horizontally. We evaluated SparseLightVR2 with a study (N=29) by comparing three conditions: 1) no SPD, where the peripheral display (PD) was inactive; 2) extended SPD, where the PD provided visual cues consistent with and extending the HMD's main screen; and 3) counter-vection SPD, where the PD's visuals were flipped horizontally during VR travel to provide optic flow in the opposite direction of the travel. The participants experienced passive motion on a linear path and reported introspective measures such as sensation of self-motion. Results showed, compared to no SPD, both extended and counter-vection SPDs provided a more natural experience of motion, while extended SPD also enhanced vection intensity and believability of movement. Yet, visually induced motion sickness (VIMS) was not affected by display condition. To investigate the reason behind these non-significant results, we conducted a follow-up study and had users increase peripheral counter-vection visuals on the central HMD screen until they nulled out vection. Our results suggest extending HMDs through SPDs enhanced vection, naturalness, and believability of movement without enhancing VIMS, but reversed SPD motion cues might not be strong enough to reduce vection and VIMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信