以离散时间函数的形式构造带度数的可加性幂回归模型

A. V. Karaulova, M. Bazilevskiy
{"title":"以离散时间函数的形式构造带度数的可加性幂回归模型","authors":"A. V. Karaulova, M. Bazilevskiy","doi":"10.26731/2658-3704.2022.2(14).1-7","DOIUrl":null,"url":null,"abstract":". The article is devoted to the construction of an additive power regression model with degrees in the form of discrete time functions. An algorithm for its approximate estimation using the least squares method is proposed. The proposed estimation algorithm is demonstrated by the example of statistical data of the gross regional product in the Irkutsk region and current expenditures on basic scientific research for the period 2000-2019.","PeriodicalId":431708,"journal":{"name":"Information Technology and Mathematical Modeling in the Management of Complex Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONSTRUCTION OF ADDITIVE POWER REGRESSION MODELS WITH DEGREES IN THE FORM OF DISCRETE TIME FUNCTIONS\",\"authors\":\"A. V. Karaulova, M. Bazilevskiy\",\"doi\":\"10.26731/2658-3704.2022.2(14).1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The article is devoted to the construction of an additive power regression model with degrees in the form of discrete time functions. An algorithm for its approximate estimation using the least squares method is proposed. The proposed estimation algorithm is demonstrated by the example of statistical data of the gross regional product in the Irkutsk region and current expenditures on basic scientific research for the period 2000-2019.\",\"PeriodicalId\":431708,\"journal\":{\"name\":\"Information Technology and Mathematical Modeling in the Management of Complex Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Mathematical Modeling in the Management of Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26731/2658-3704.2022.2(14).1-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Mathematical Modeling in the Management of Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26731/2658-3704.2022.2(14).1-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文以离散时间函数的形式建立了一个带度数的可加性幂回归模型。提出了一种用最小二乘法对其进行近似估计的算法。以伊尔库茨克地区生产总值统计数据和2000-2019年基础科学研究支出为例,对本文提出的估算算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONSTRUCTION OF ADDITIVE POWER REGRESSION MODELS WITH DEGREES IN THE FORM OF DISCRETE TIME FUNCTIONS
. The article is devoted to the construction of an additive power regression model with degrees in the form of discrete time functions. An algorithm for its approximate estimation using the least squares method is proposed. The proposed estimation algorithm is demonstrated by the example of statistical data of the gross regional product in the Irkutsk region and current expenditures on basic scientific research for the period 2000-2019.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信