线性和圆形天线阵列的直接自适应方法

Y. I. Glushankov, V. I. Tsarik
{"title":"线性和圆形天线阵列的直接自适应方法","authors":"Y. I. Glushankov, V. I. Tsarik","doi":"10.32603/1993-8985-2023-26-1-6-16","DOIUrl":null,"url":null,"abstract":"Introduction. The mitigation of interferences that degrade the performance of navigation systems constitutes one of the most significant problems of contemporary satellite navigation. This problem is conventionally solved using digital adaptive space filters. Depending on a particular radio technical system, the mathematical description of digital signal processing methods may involve specific calculation structures implemented using specific calculation algorithms. For example, the use of centrosymmetric linear and circular antenna arrays in a radio navigation system allows the description of such systems in terms of Toeplitz and circulant sample covariance matrices, respectively, and the inversion of such matrices by means of special numerical methods in order to design a digital filter.Aim. A comparative analysis of the performance of space signal processing algorithms is carried out along with an estimation of Toeplitz and circulant sample covariance matrices and numerical methods of their inversion. The previously obtained results in this field are clarified.Materials and methods. An analysis of algorithm performance was carried out in the MATLAB environment using experimental recordings of satellite navigation signals and jammers obtained by an actual radio technical system.Results. A new expression was derived for estimating circulant sample covariance matrices. Formulae that describe a modification of the Bareiss numerical Toeplitz matrix inversion algorithm for the case of complex Hermitian matrix were introduced. An analysis of the results of computer simulation allowed the algorithms with the highest performance to be indicated. The amount of time taken by the algorithms based on Toeplitz and circulant matrices did not exceed 2.5 10⋅ −3 s and 0.04 s, respectively. The carrier-to-noise ratio in the processed signal was at least 46 dB. Conclusion. The formulae obtained and the algorithms analyzed can be used when implementing adaptive digital filtering of satellite navigation signals.","PeriodicalId":217555,"journal":{"name":"Journal of the Russian Universities. Radioelectronics","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direct Adaption Methods for Linear and Circular Antenna Arrays\",\"authors\":\"Y. I. Glushankov, V. I. Tsarik\",\"doi\":\"10.32603/1993-8985-2023-26-1-6-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. The mitigation of interferences that degrade the performance of navigation systems constitutes one of the most significant problems of contemporary satellite navigation. This problem is conventionally solved using digital adaptive space filters. Depending on a particular radio technical system, the mathematical description of digital signal processing methods may involve specific calculation structures implemented using specific calculation algorithms. For example, the use of centrosymmetric linear and circular antenna arrays in a radio navigation system allows the description of such systems in terms of Toeplitz and circulant sample covariance matrices, respectively, and the inversion of such matrices by means of special numerical methods in order to design a digital filter.Aim. A comparative analysis of the performance of space signal processing algorithms is carried out along with an estimation of Toeplitz and circulant sample covariance matrices and numerical methods of their inversion. The previously obtained results in this field are clarified.Materials and methods. An analysis of algorithm performance was carried out in the MATLAB environment using experimental recordings of satellite navigation signals and jammers obtained by an actual radio technical system.Results. A new expression was derived for estimating circulant sample covariance matrices. Formulae that describe a modification of the Bareiss numerical Toeplitz matrix inversion algorithm for the case of complex Hermitian matrix were introduced. An analysis of the results of computer simulation allowed the algorithms with the highest performance to be indicated. The amount of time taken by the algorithms based on Toeplitz and circulant matrices did not exceed 2.5 10⋅ −3 s and 0.04 s, respectively. The carrier-to-noise ratio in the processed signal was at least 46 dB. Conclusion. The formulae obtained and the algorithms analyzed can be used when implementing adaptive digital filtering of satellite navigation signals.\",\"PeriodicalId\":217555,\"journal\":{\"name\":\"Journal of the Russian Universities. Radioelectronics\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Russian Universities. Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/1993-8985-2023-26-1-6-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Russian Universities. Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/1993-8985-2023-26-1-6-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍。降低导航系统性能的干扰是当代卫星导航最重要的问题之一。这个问题通常使用数字自适应空间滤波器来解决。根据特定的无线电技术系统,数字信号处理方法的数学描述可能涉及使用特定计算算法实现的特定计算结构。例如,在无线电导航系统中使用中心对称线性和圆形天线阵列,可以分别用Toeplitz和循环样本协方差矩阵来描述这些系统,并通过特殊的数值方法对这些矩阵进行反演,以便设计数字滤波器。对空间信号处理算法的性能进行了比较分析,给出了Toeplitz和循环样本协方差矩阵的估计及其反演的数值方法。澄清了这一领域以前取得的结果。材料和方法。利用实际无线电技术系统中卫星导航信号和干扰信号的实验记录,在MATLAB环境下对算法的性能进行了分析。推导了循环样本协方差矩阵估计的新表达式。介绍了在复厄米矩阵情况下对Bareiss数值Toeplitz矩阵反演算法的一种改进。通过对计算机模拟结果的分析,指出了具有最高性能的算法。基于Toeplitz和循环矩阵的算法耗时分别不超过2.5 10⋅−3 s和0.04 s。处理后信号的载波噪声比至少为46 dB。结论。所得到的公式和分析的算法可用于实现卫星导航信号的自适应数字滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Adaption Methods for Linear and Circular Antenna Arrays
Introduction. The mitigation of interferences that degrade the performance of navigation systems constitutes one of the most significant problems of contemporary satellite navigation. This problem is conventionally solved using digital adaptive space filters. Depending on a particular radio technical system, the mathematical description of digital signal processing methods may involve specific calculation structures implemented using specific calculation algorithms. For example, the use of centrosymmetric linear and circular antenna arrays in a radio navigation system allows the description of such systems in terms of Toeplitz and circulant sample covariance matrices, respectively, and the inversion of such matrices by means of special numerical methods in order to design a digital filter.Aim. A comparative analysis of the performance of space signal processing algorithms is carried out along with an estimation of Toeplitz and circulant sample covariance matrices and numerical methods of their inversion. The previously obtained results in this field are clarified.Materials and methods. An analysis of algorithm performance was carried out in the MATLAB environment using experimental recordings of satellite navigation signals and jammers obtained by an actual radio technical system.Results. A new expression was derived for estimating circulant sample covariance matrices. Formulae that describe a modification of the Bareiss numerical Toeplitz matrix inversion algorithm for the case of complex Hermitian matrix were introduced. An analysis of the results of computer simulation allowed the algorithms with the highest performance to be indicated. The amount of time taken by the algorithms based on Toeplitz and circulant matrices did not exceed 2.5 10⋅ −3 s and 0.04 s, respectively. The carrier-to-noise ratio in the processed signal was at least 46 dB. Conclusion. The formulae obtained and the algorithms analyzed can be used when implementing adaptive digital filtering of satellite navigation signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信