{"title":"高阶有效规划的定量行为推理:应用距离","authors":"Francesco Gavazzo","doi":"10.1145/3209108.3209149","DOIUrl":null,"url":null,"abstract":"This paper studies quantitative refinements of Abramsky's applicative similarity and bisimilarity in the context of a generalisation of Fuzz, a call-by-value λ-calculus with a linear type system that can express program sensitivity, enriched with algebraic operations à la Plotkin and Power. To do so a general, abstract framework for studying behavioural relations taking values over quantales is introduced according to Lawvere's analysis of generalised metric spaces. Barr's notion of relator (or lax extension) is then extended to quantale-valued relations, adapting and extending results from the field of monoidal topology. Abstract notions of quantale-valued effectful applicative similarity and bisimilarity are then defined and proved to be a compatible generalised metric (in the sense of Lawvere) and pseudometric, respectively, under mild conditions.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Quantitative Behavioural Reasoning for Higher-order Effectful Programs: Applicative Distances\",\"authors\":\"Francesco Gavazzo\",\"doi\":\"10.1145/3209108.3209149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies quantitative refinements of Abramsky's applicative similarity and bisimilarity in the context of a generalisation of Fuzz, a call-by-value λ-calculus with a linear type system that can express program sensitivity, enriched with algebraic operations à la Plotkin and Power. To do so a general, abstract framework for studying behavioural relations taking values over quantales is introduced according to Lawvere's analysis of generalised metric spaces. Barr's notion of relator (or lax extension) is then extended to quantale-valued relations, adapting and extending results from the field of monoidal topology. Abstract notions of quantale-valued effectful applicative similarity and bisimilarity are then defined and proved to be a compatible generalised metric (in the sense of Lawvere) and pseudometric, respectively, under mild conditions.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative Behavioural Reasoning for Higher-order Effectful Programs: Applicative Distances
This paper studies quantitative refinements of Abramsky's applicative similarity and bisimilarity in the context of a generalisation of Fuzz, a call-by-value λ-calculus with a linear type system that can express program sensitivity, enriched with algebraic operations à la Plotkin and Power. To do so a general, abstract framework for studying behavioural relations taking values over quantales is introduced according to Lawvere's analysis of generalised metric spaces. Barr's notion of relator (or lax extension) is then extended to quantale-valued relations, adapting and extending results from the field of monoidal topology. Abstract notions of quantale-valued effectful applicative similarity and bisimilarity are then defined and proved to be a compatible generalised metric (in the sense of Lawvere) and pseudometric, respectively, under mild conditions.