辅助界面的无监督协同适应促进冗余控制的感觉运动学习

Dalia De Santis, Patrycja Dzialecka, F. Mussa-Ivaldi
{"title":"辅助界面的无监督协同适应促进冗余控制的感觉运动学习","authors":"Dalia De Santis, Patrycja Dzialecka, F. Mussa-Ivaldi","doi":"10.1109/BIOROB.2018.8487912","DOIUrl":null,"url":null,"abstract":"Interfaces that exploit biological signals or movements to control the operation of lower-dimensional systems external to the body are at the frontier for augmenting human abilities, but also constitute a learning challenge for their users. We developed and tested an unsupervised coadaptive algorithm that changed the mapping of a body machine interface to match the natural movement distribution of the users. Users controlled a cursor on a computer monitor using arm and shoulder motions captured by a set of inertial sensors in either of three conditions: i) a constant body-to-cursor map obtained through Principal Component Analysis of calibration movements, ii) a map that was recomputed at specified points in time, iii) a map that adaptively changed over time. We used recursive online PCA to incrementally shift the projection space towards the 2-dimensional subspace capturing the greatest sensor signal variance. Results suggest that training with the coadaptive BMI allows for faster internalization of the control space while reducing user's reliance on visual feedback.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Unsupervised Coadaptation of an Assistive Interface to Facilitate Sensorimotor Learning of Redundant Control\",\"authors\":\"Dalia De Santis, Patrycja Dzialecka, F. Mussa-Ivaldi\",\"doi\":\"10.1109/BIOROB.2018.8487912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interfaces that exploit biological signals or movements to control the operation of lower-dimensional systems external to the body are at the frontier for augmenting human abilities, but also constitute a learning challenge for their users. We developed and tested an unsupervised coadaptive algorithm that changed the mapping of a body machine interface to match the natural movement distribution of the users. Users controlled a cursor on a computer monitor using arm and shoulder motions captured by a set of inertial sensors in either of three conditions: i) a constant body-to-cursor map obtained through Principal Component Analysis of calibration movements, ii) a map that was recomputed at specified points in time, iii) a map that adaptively changed over time. We used recursive online PCA to incrementally shift the projection space towards the 2-dimensional subspace capturing the greatest sensor signal variance. Results suggest that training with the coadaptive BMI allows for faster internalization of the control space while reducing user's reliance on visual feedback.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用生物信号或运动来控制身体外部低维系统操作的界面是增强人类能力的前沿,但也对其用户构成了学习挑战。我们开发并测试了一种无监督的协同适应算法,该算法改变了身体机器界面的映射,以匹配用户的自然运动分布。用户使用一组惯性传感器捕捉到的手臂和肩膀的运动,在以下三种情况下控制计算机显示器上的光标:i)通过校准运动的主成分分析获得的恒定的身体到光标的地图,ii)在指定时间点重新计算的地图,iii)随时间自适应变化的地图。我们使用递归在线PCA将投影空间增量移动到捕获最大传感器信号方差的二维子空间。结果表明,使用共适应BMI训练可以更快地内化控制空间,同时减少用户对视觉反馈的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Coadaptation of an Assistive Interface to Facilitate Sensorimotor Learning of Redundant Control
Interfaces that exploit biological signals or movements to control the operation of lower-dimensional systems external to the body are at the frontier for augmenting human abilities, but also constitute a learning challenge for their users. We developed and tested an unsupervised coadaptive algorithm that changed the mapping of a body machine interface to match the natural movement distribution of the users. Users controlled a cursor on a computer monitor using arm and shoulder motions captured by a set of inertial sensors in either of three conditions: i) a constant body-to-cursor map obtained through Principal Component Analysis of calibration movements, ii) a map that was recomputed at specified points in time, iii) a map that adaptively changed over time. We used recursive online PCA to incrementally shift the projection space towards the 2-dimensional subspace capturing the greatest sensor signal variance. Results suggest that training with the coadaptive BMI allows for faster internalization of the control space while reducing user's reliance on visual feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信