基于树莓派的传统机器的整体设备利用率(OEU)监测和远程质量检查

Siti Nurul Huda Abd Rahim, A. H. Embong
{"title":"基于树莓派的传统机器的整体设备利用率(OEU)监测和远程质量检查","authors":"Siti Nurul Huda Abd Rahim, A. H. Embong","doi":"10.51662/jiae.v1i2.26","DOIUrl":null,"url":null,"abstract":"Overall Equipment Utilisation (OEU) plays an important role as a benchmark for manufacturing companies to determine each machine's efficiency. Currently, there is no proper OEU measurement system in legacy machines and only relies on human observation. This project aims to develop a measurement of OEU system by using Optical Character Recognition (OCR). An efficient Optical Character Recognition (OCR) algorithm is needed to have a high percentage of recognition rate. The outcome of this project will be a Graphical User Interface (GUI) that display real-time OEU monitoring and remote quality check for legacy machines. Pytesseract-OCR Version 4 classifier using the Recurrent Neural Network (RNN) method has been proposed in this paper. Furthermore, an error detection feature is designed from OCR output.","PeriodicalId":424190,"journal":{"name":"Journal of Integrated and Advanced Engineering (JIAE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overall Equipment Utilisation (OEU) Monitoring and Remote Quality Check in Legacy Machine with Raspberry Pi\",\"authors\":\"Siti Nurul Huda Abd Rahim, A. H. Embong\",\"doi\":\"10.51662/jiae.v1i2.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overall Equipment Utilisation (OEU) plays an important role as a benchmark for manufacturing companies to determine each machine's efficiency. Currently, there is no proper OEU measurement system in legacy machines and only relies on human observation. This project aims to develop a measurement of OEU system by using Optical Character Recognition (OCR). An efficient Optical Character Recognition (OCR) algorithm is needed to have a high percentage of recognition rate. The outcome of this project will be a Graphical User Interface (GUI) that display real-time OEU monitoring and remote quality check for legacy machines. Pytesseract-OCR Version 4 classifier using the Recurrent Neural Network (RNN) method has been proposed in this paper. Furthermore, an error detection feature is designed from OCR output.\",\"PeriodicalId\":424190,\"journal\":{\"name\":\"Journal of Integrated and Advanced Engineering (JIAE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated and Advanced Engineering (JIAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51662/jiae.v1i2.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated and Advanced Engineering (JIAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51662/jiae.v1i2.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

整体设备利用率(OEU)作为制造企业确定每台机器效率的基准,发挥着重要作用。目前,传统机器没有合适的OEU测量系统,只能依靠人工观察。本课题旨在开发一种基于光学字符识别(OCR)的OEU测量系统。为了达到较高的识别率,需要一种高效的光学字符识别(OCR)算法。该项目的结果将是一个图形用户界面(GUI),显示对遗留机器的实时OEU监控和远程质量检查。本文提出了使用递归神经网络(RNN)方法的Pytesseract-OCR第4版分类器。在此基础上,设计了基于OCR输出的错误检测特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overall Equipment Utilisation (OEU) Monitoring and Remote Quality Check in Legacy Machine with Raspberry Pi
Overall Equipment Utilisation (OEU) plays an important role as a benchmark for manufacturing companies to determine each machine's efficiency. Currently, there is no proper OEU measurement system in legacy machines and only relies on human observation. This project aims to develop a measurement of OEU system by using Optical Character Recognition (OCR). An efficient Optical Character Recognition (OCR) algorithm is needed to have a high percentage of recognition rate. The outcome of this project will be a Graphical User Interface (GUI) that display real-time OEU monitoring and remote quality check for legacy machines. Pytesseract-OCR Version 4 classifier using the Recurrent Neural Network (RNN) method has been proposed in this paper. Furthermore, an error detection feature is designed from OCR output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信