三维形状不变表示的层次结构

D. Weinshall
{"title":"三维形状不变表示的层次结构","authors":"D. Weinshall","doi":"10.1109/WQV.1993.262945","DOIUrl":null,"url":null,"abstract":"The representation of geometrical 3D shape is discussed in this paper. A hierarchy of representations, which are invariant under weak perspective to either rigid or affine 3D transformations is described. These representations can be computed efficiently from a sequence of images with a linear and incremental algorithm. This hierarchy provides the means for adding a controlled amount of quantitative information to a symbolic representation. It also provides a library of representations, which may be used for different tasks (or purposes).<<ETX>>","PeriodicalId":309941,"journal":{"name":"[1993] Proceedings IEEE Workshop on Qualitative Vision","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hierarchy of invariant representations of 3D shape\",\"authors\":\"D. Weinshall\",\"doi\":\"10.1109/WQV.1993.262945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The representation of geometrical 3D shape is discussed in this paper. A hierarchy of representations, which are invariant under weak perspective to either rigid or affine 3D transformations is described. These representations can be computed efficiently from a sequence of images with a linear and incremental algorithm. This hierarchy provides the means for adding a controlled amount of quantitative information to a symbolic representation. It also provides a library of representations, which may be used for different tasks (or purposes).<<ETX>>\",\"PeriodicalId\":309941,\"journal\":{\"name\":\"[1993] Proceedings IEEE Workshop on Qualitative Vision\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings IEEE Workshop on Qualitative Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WQV.1993.262945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings IEEE Workshop on Qualitative Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WQV.1993.262945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了三维几何形状的表示方法。描述了在弱透视下对刚性或仿射三维变换不变的表示层次。这些表示可以用线性和增量算法从一系列图像中有效地计算出来。这种层次结构提供了向符号表示添加数量可控的定量信息的方法。它还提供了一个表示库,可用于不同的任务(或目的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchy of invariant representations of 3D shape
The representation of geometrical 3D shape is discussed in this paper. A hierarchy of representations, which are invariant under weak perspective to either rigid or affine 3D transformations is described. These representations can be computed efficiently from a sequence of images with a linear and incremental algorithm. This hierarchy provides the means for adding a controlled amount of quantitative information to a symbolic representation. It also provides a library of representations, which may be used for different tasks (or purposes).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信