一种基于支持向量机的人脸识别方法,使用小波主成分分析来表示人脸

M. Safari, M. Harandi, Babak Nadjar Araabi
{"title":"一种基于支持向量机的人脸识别方法,使用小波主成分分析来表示人脸","authors":"M. Safari, M. Harandi, Babak Nadjar Araabi","doi":"10.1109/ICIP.2004.1419433","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method of face representation which is used for face recognition by SVM. For face representation we have used a two-step method, first two-dimensional discrete wavelet transform (DWT) is used to transform the faces to a more discriminated space and then principal component analysis (PCA) is applied. The proposed method produced a significant improvement which includes a substantial reduction in error rate and in time of processing during the obtaining PCA orthonormal basis.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A SVM-based method for face recognition using a wavelet PCA representation of faces\",\"authors\":\"M. Safari, M. Harandi, Babak Nadjar Araabi\",\"doi\":\"10.1109/ICIP.2004.1419433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method of face representation which is used for face recognition by SVM. For face representation we have used a two-step method, first two-dimensional discrete wavelet transform (DWT) is used to transform the faces to a more discriminated space and then principal component analysis (PCA) is applied. The proposed method produced a significant improvement which includes a substantial reduction in error rate and in time of processing during the obtaining PCA orthonormal basis.\",\"PeriodicalId\":184798,\"journal\":{\"name\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2004.1419433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1419433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

提出了一种基于支持向量机的人脸识别方法。对于人脸表示,我们采用了两步法,首先使用二维离散小波变换(DWT)将人脸变换到一个更有判别性的空间,然后应用主成分分析(PCA)。提出的方法产生了显著的改进,包括在获得主成分分析标准正交基的过程中大大降低了错误率和处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SVM-based method for face recognition using a wavelet PCA representation of faces
This paper proposes a new method of face representation which is used for face recognition by SVM. For face representation we have used a two-step method, first two-dimensional discrete wavelet transform (DWT) is used to transform the faces to a more discriminated space and then principal component analysis (PCA) is applied. The proposed method produced a significant improvement which includes a substantial reduction in error rate and in time of processing during the obtaining PCA orthonormal basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信