控制非线性水波:Korteweg-de Vries-Burgers方程的边界稳定

Weijiu Liu, M. Krstić
{"title":"控制非线性水波:Korteweg-de Vries-Burgers方程的边界稳定","authors":"Weijiu Liu, M. Krstić","doi":"10.1109/ACC.1999.786108","DOIUrl":null,"url":null,"abstract":"The problem of global exponential stabilization by boundary feedback for the Korteweg-de Vries-Burgers equation on the domain [0,1] is considered. We derive a control law of the form u(0)=u/sub x/(1)=u/sub xx/(1)-k[u(1)/sup 3/+ u(1)]=0, where k is a sufficiently large positive constant, and prove that it guarantees L/sup 2/-global exponential stability, H/sup 1/-global asymptotic stability, and H/sup 1/ semi-global exponential stability. The closed-loop system is shown to be well posed.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Controlling nonlinear water waves: boundary stabilization of the Korteweg-de Vries-Burgers equation\",\"authors\":\"Weijiu Liu, M. Krstić\",\"doi\":\"10.1109/ACC.1999.786108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of global exponential stabilization by boundary feedback for the Korteweg-de Vries-Burgers equation on the domain [0,1] is considered. We derive a control law of the form u(0)=u/sub x/(1)=u/sub xx/(1)-k[u(1)/sup 3/+ u(1)]=0, where k is a sufficiently large positive constant, and prove that it guarantees L/sup 2/-global exponential stability, H/sup 1/-global asymptotic stability, and H/sup 1/ semi-global exponential stability. The closed-loop system is shown to be well posed.\",\"PeriodicalId\":441363,\"journal\":{\"name\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1999.786108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了Korteweg-de Vries-Burgers方程在定域[0,1]上的边界反馈全局指数镇定问题。我们导出了u(0)=u/下标x/(1)=u/下标xx/(1)-k[u(1)/sup 3/+ u(1)]=0的控制律,其中k是一个足够大的正常数,并证明了它保证了L/sup 2/-全局指数稳定性、H/sup 1/-全局渐近稳定性和H/sup 1/半全局指数稳定性。闭环系统具有良好的定姿性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling nonlinear water waves: boundary stabilization of the Korteweg-de Vries-Burgers equation
The problem of global exponential stabilization by boundary feedback for the Korteweg-de Vries-Burgers equation on the domain [0,1] is considered. We derive a control law of the form u(0)=u/sub x/(1)=u/sub xx/(1)-k[u(1)/sup 3/+ u(1)]=0, where k is a sufficiently large positive constant, and prove that it guarantees L/sup 2/-global exponential stability, H/sup 1/-global asymptotic stability, and H/sup 1/ semi-global exponential stability. The closed-loop system is shown to be well posed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信