基于集成深度网络的姿态不变人脸识别的闭塞引导紧凑模板学习

Yuhang Wu, I. Kakadiaris
{"title":"基于集成深度网络的姿态不变人脸识别的闭塞引导紧凑模板学习","authors":"Yuhang Wu, I. Kakadiaris","doi":"10.1109/ICB45273.2019.8987272","DOIUrl":null,"url":null,"abstract":"Concatenation of the deep network representations extracted from different facial patches helps to improve face recognition performance. However, the concatenated facial template increases in size and contains redundant information. Previous solutions aim to reduce the dimensionality of the facial template without considering the occlusion pattern of the facial patches. In this paper, we propose an occlusion-guided compact template learning (OGCTL) approach that only uses the information from visible patches to construct the compact template. The compact face representation is not sensitive to the number of patches that are used to construct the facial template, and is more suitable for incorporating the information from different view angles for image-set based face recognition. Instead of using occlusion masks in face matching (e.g., DPRFS [38]), the proposed method uses occlusion masks in template construction and achieves significantly better image-set based face verification performance on a challenging database with a template size that is an order-of-magnitude smaller than DPRFS.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OGCTL: Occlusion-guided compact template learning for ensemble deep network-based pose-invariant face recognition\",\"authors\":\"Yuhang Wu, I. Kakadiaris\",\"doi\":\"10.1109/ICB45273.2019.8987272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concatenation of the deep network representations extracted from different facial patches helps to improve face recognition performance. However, the concatenated facial template increases in size and contains redundant information. Previous solutions aim to reduce the dimensionality of the facial template without considering the occlusion pattern of the facial patches. In this paper, we propose an occlusion-guided compact template learning (OGCTL) approach that only uses the information from visible patches to construct the compact template. The compact face representation is not sensitive to the number of patches that are used to construct the facial template, and is more suitable for incorporating the information from different view angles for image-set based face recognition. Instead of using occlusion masks in face matching (e.g., DPRFS [38]), the proposed method uses occlusion masks in template construction and achieves significantly better image-set based face verification performance on a challenging database with a template size that is an order-of-magnitude smaller than DPRFS.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从不同的人脸补丁中提取的深度网络表示的串联有助于提高人脸识别性能。然而,拼接后的面部模板会增大尺寸并包含冗余信息。先前的解决方案旨在降低面部模板的维数,而不考虑面部斑块的遮挡模式。在本文中,我们提出了一种遮挡引导的紧凑模板学习(OGCTL)方法,该方法仅使用来自可见斑块的信息来构建紧凑模板。紧凑的人脸表示对构建人脸模板所用的小块数量不敏感,更适合将不同视角的信息融合到基于图像集的人脸识别中。与在人脸匹配中使用遮挡遮罩(例如,DPRFS[38])不同,本文提出的方法在模板构建中使用遮挡遮罩,并在模板大小比DPRFS小一个数量级的具有挑战性的数据库上实现了明显更好的基于图像集的人脸验证性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OGCTL: Occlusion-guided compact template learning for ensemble deep network-based pose-invariant face recognition
Concatenation of the deep network representations extracted from different facial patches helps to improve face recognition performance. However, the concatenated facial template increases in size and contains redundant information. Previous solutions aim to reduce the dimensionality of the facial template without considering the occlusion pattern of the facial patches. In this paper, we propose an occlusion-guided compact template learning (OGCTL) approach that only uses the information from visible patches to construct the compact template. The compact face representation is not sensitive to the number of patches that are used to construct the facial template, and is more suitable for incorporating the information from different view angles for image-set based face recognition. Instead of using occlusion masks in face matching (e.g., DPRFS [38]), the proposed method uses occlusion masks in template construction and achieves significantly better image-set based face verification performance on a challenging database with a template size that is an order-of-magnitude smaller than DPRFS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信