基于稀疏表示和欧氏距离的分类

Ali Julazadeh, M. Marsousi, J. Alirezaie
{"title":"基于稀疏表示和欧氏距离的分类","authors":"Ali Julazadeh, M. Marsousi, J. Alirezaie","doi":"10.1109/VCIP.2012.6410815","DOIUrl":null,"url":null,"abstract":"In this paper, A novel classification approach based on sparse representation framework is proposed. The method finds the minimum Euclidian distance between an input patch (pattern) and atoms (templates) of a learnt-base dictionary for different classes to perform the classification task. A mathematical approach is developed to map the sparse representation vector to Euclidian distances. We show that the highest coefficient of the sparse vector is not necessarily a suitable indicator to classify input patches, and it results in classification errors. The K-SVD dictionary learning method is utilized to separately create class specific sub-dictionaries. The proposed algorithm is compared with the conventional sparse representation classification (SRC) framework to evaluate its performance. Our experimental results demonstrate a higher accuracy with a lower computational time.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Classification based on sparse representation and Euclidian distance\",\"authors\":\"Ali Julazadeh, M. Marsousi, J. Alirezaie\",\"doi\":\"10.1109/VCIP.2012.6410815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, A novel classification approach based on sparse representation framework is proposed. The method finds the minimum Euclidian distance between an input patch (pattern) and atoms (templates) of a learnt-base dictionary for different classes to perform the classification task. A mathematical approach is developed to map the sparse representation vector to Euclidian distances. We show that the highest coefficient of the sparse vector is not necessarily a suitable indicator to classify input patches, and it results in classification errors. The K-SVD dictionary learning method is utilized to separately create class specific sub-dictionaries. The proposed algorithm is compared with the conventional sparse representation classification (SRC) framework to evaluate its performance. Our experimental results demonstrate a higher accuracy with a lower computational time.\",\"PeriodicalId\":103073,\"journal\":{\"name\":\"2012 Visual Communications and Image Processing\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Visual Communications and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2012.6410815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于稀疏表示框架的分类方法。该方法为不同的类找到输入补丁(模式)和学习基字典的原子(模板)之间的最小欧几里德距离来执行分类任务。提出了一种将稀疏表示向量映射到欧氏距离的数学方法。我们发现,稀疏向量的最高系数不一定是对输入patch进行分类的合适指标,它会导致分类错误。利用K-SVD字典学习方法分别创建类特定子字典。将该算法与传统的稀疏表示分类(SRC)框架进行比较,评价其性能。实验结果表明,该方法具有较高的精度和较短的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification based on sparse representation and Euclidian distance
In this paper, A novel classification approach based on sparse representation framework is proposed. The method finds the minimum Euclidian distance between an input patch (pattern) and atoms (templates) of a learnt-base dictionary for different classes to perform the classification task. A mathematical approach is developed to map the sparse representation vector to Euclidian distances. We show that the highest coefficient of the sparse vector is not necessarily a suitable indicator to classify input patches, and it results in classification errors. The K-SVD dictionary learning method is utilized to separately create class specific sub-dictionaries. The proposed algorithm is compared with the conventional sparse representation classification (SRC) framework to evaluate its performance. Our experimental results demonstrate a higher accuracy with a lower computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信