基于词对齐网络和判别错误类型分类的识别率估计

A. Ogawa, Takaaki Hori, Atsushi Nakamura
{"title":"基于词对齐网络和判别错误类型分类的识别率估计","authors":"A. Ogawa, Takaaki Hori, Atsushi Nakamura","doi":"10.1109/SLT.2012.6424207","DOIUrl":null,"url":null,"abstract":"Techniques for estimating recognition rates without using reference transcriptions are essential if we are to judge whether or not speech recognition technology is applicable to a new task. This paper proposes two recognition rate estimation methods for continuous speech recognition. The first is an easy-to-use method based on a word alignment network (WAN) obtained from a word confusion network through simple conversion procedures. A WAN contains the correct (C), substitution error (S), insertion error (I) and deletion error (D) probabilities word-by-word for a recognition result. By summing these CSID probabilities individually, the percent correct and word accuracy (WACC) can be estimated without using a reference transcription. The second more advanced method refines the CSID probabilities provided by a WAN based on discriminative error type classification (ETC) and estimates the recognition rates more accurately. In the experiments on the MIT lecture speech corpus, we obtained 0.97 of correlation coefficient between the true WACCs calculated by a scoring tool using reference transcriptions and the WACCs estimated from the discriminative ETC results.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Recognition rate estimation based on word alignment network and discriminative error type classification\",\"authors\":\"A. Ogawa, Takaaki Hori, Atsushi Nakamura\",\"doi\":\"10.1109/SLT.2012.6424207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Techniques for estimating recognition rates without using reference transcriptions are essential if we are to judge whether or not speech recognition technology is applicable to a new task. This paper proposes two recognition rate estimation methods for continuous speech recognition. The first is an easy-to-use method based on a word alignment network (WAN) obtained from a word confusion network through simple conversion procedures. A WAN contains the correct (C), substitution error (S), insertion error (I) and deletion error (D) probabilities word-by-word for a recognition result. By summing these CSID probabilities individually, the percent correct and word accuracy (WACC) can be estimated without using a reference transcription. The second more advanced method refines the CSID probabilities provided by a WAN based on discriminative error type classification (ETC) and estimates the recognition rates more accurately. In the experiments on the MIT lecture speech corpus, we obtained 0.97 of correlation coefficient between the true WACCs calculated by a scoring tool using reference transcriptions and the WACCs estimated from the discriminative ETC results.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

如果我们要判断语音识别技术是否适用于新任务,那么在不使用参考转录的情况下估计识别率的技术是必不可少的。本文提出了两种用于连续语音识别的识别率估计方法。第一种方法是通过简单的转换程序从一个词混淆网络中获得一个基于词对齐网络(WAN)的易于使用的方法。广域网一个字一个字地包含一个识别结果的正确概率(C)、替换错误(S)、插入错误(I)和删除错误(D)。通过分别将这些CSID概率相加,可以在不使用参考转录的情况下估计正确率和单词准确性(WACC)。第二种更高级的方法是基于区别错误类型分类(ETC)对广域网提供的CSID概率进行细化,并更准确地估计识别率。在MIT演讲语料库的实验中,我们获得了使用参考转录评分工具计算的真实WACCs与判别ETC结果估计的WACCs之间的相关系数为0.97。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition rate estimation based on word alignment network and discriminative error type classification
Techniques for estimating recognition rates without using reference transcriptions are essential if we are to judge whether or not speech recognition technology is applicable to a new task. This paper proposes two recognition rate estimation methods for continuous speech recognition. The first is an easy-to-use method based on a word alignment network (WAN) obtained from a word confusion network through simple conversion procedures. A WAN contains the correct (C), substitution error (S), insertion error (I) and deletion error (D) probabilities word-by-word for a recognition result. By summing these CSID probabilities individually, the percent correct and word accuracy (WACC) can be estimated without using a reference transcription. The second more advanced method refines the CSID probabilities provided by a WAN based on discriminative error type classification (ETC) and estimates the recognition rates more accurately. In the experiments on the MIT lecture speech corpus, we obtained 0.97 of correlation coefficient between the true WACCs calculated by a scoring tool using reference transcriptions and the WACCs estimated from the discriminative ETC results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信