KLAP用于真实世界的位置隐私保护

A. Shahid, N. Pissinou, S. S. Iyengar, Jerry Miller, Ziqian Ding, Teresita Lemus
{"title":"KLAP用于真实世界的位置隐私保护","authors":"A. Shahid, N. Pissinou, S. S. Iyengar, Jerry Miller, Ziqian Ding, Teresita Lemus","doi":"10.1109/SERVICES.2018.00022","DOIUrl":null,"url":null,"abstract":"In Location-Based Services (LBS), users are required to disclose their precise location information to query a service provider. An untrusted service provider can abuse those queries to infer sensitive information on a user through spatio-temporal and historical data analyses. Depicting the drawbacks of existing privacy-preserving approaches in LBS, we propose a user-centric obfuscation approach, called KLAP, based on the three fundamental obfuscation requirements: k number of locations, l-diversity, and privacy area preservation. Considering user's sensitivity to different locations and utilizing Real-Time Traffic Information (RTTI), KLAP generates a convex Concealing Region (CR) to hide user's location such that the locations, forming the CR, resemble similar sensitivity and are resilient against a wide range of inferences in spatio-temporal domain. For the first time, a novel CR pruning technique is proposed to significantly improve the delay between successive CR submissions. We carry out an experiment with a real dataset to show its effectiveness for sporadic, frequent, and continuous service use cases.","PeriodicalId":130225,"journal":{"name":"2018 IEEE World Congress on Services (SERVICES)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KLAP for Real-World Protection of Location Privacy\",\"authors\":\"A. Shahid, N. Pissinou, S. S. Iyengar, Jerry Miller, Ziqian Ding, Teresita Lemus\",\"doi\":\"10.1109/SERVICES.2018.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Location-Based Services (LBS), users are required to disclose their precise location information to query a service provider. An untrusted service provider can abuse those queries to infer sensitive information on a user through spatio-temporal and historical data analyses. Depicting the drawbacks of existing privacy-preserving approaches in LBS, we propose a user-centric obfuscation approach, called KLAP, based on the three fundamental obfuscation requirements: k number of locations, l-diversity, and privacy area preservation. Considering user's sensitivity to different locations and utilizing Real-Time Traffic Information (RTTI), KLAP generates a convex Concealing Region (CR) to hide user's location such that the locations, forming the CR, resemble similar sensitivity and are resilient against a wide range of inferences in spatio-temporal domain. For the first time, a novel CR pruning technique is proposed to significantly improve the delay between successive CR submissions. We carry out an experiment with a real dataset to show its effectiveness for sporadic, frequent, and continuous service use cases.\",\"PeriodicalId\":130225,\"journal\":{\"name\":\"2018 IEEE World Congress on Services (SERVICES)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE World Congress on Services (SERVICES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES.2018.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE World Congress on Services (SERVICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在基于位置的服务(LBS)中,用户需要披露他们的精确位置信息来查询服务提供商。不受信任的服务提供者可以滥用这些查询,通过时空和历史数据分析推断用户的敏感信息。为了描述LBS中现有隐私保护方法的缺点,我们提出了一种以用户为中心的混淆方法,称为KLAP,该方法基于三个基本的混淆要求:k个位置数,l个多样性和隐私区域保护。考虑到用户对不同位置的敏感性,利用实时交通信息(RTTI), KLAP生成一个凸隐藏区域(CR)来隐藏用户的位置,使形成该区域的位置具有相似的敏感性,并且在时空域上具有抗各种推断的弹性。首次提出了一种新的CR剪枝技术,可以显著改善连续CR提交之间的延迟。我们用一个真实的数据集进行了一个实验,以显示其对零星、频繁和连续服务用例的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KLAP for Real-World Protection of Location Privacy
In Location-Based Services (LBS), users are required to disclose their precise location information to query a service provider. An untrusted service provider can abuse those queries to infer sensitive information on a user through spatio-temporal and historical data analyses. Depicting the drawbacks of existing privacy-preserving approaches in LBS, we propose a user-centric obfuscation approach, called KLAP, based on the three fundamental obfuscation requirements: k number of locations, l-diversity, and privacy area preservation. Considering user's sensitivity to different locations and utilizing Real-Time Traffic Information (RTTI), KLAP generates a convex Concealing Region (CR) to hide user's location such that the locations, forming the CR, resemble similar sensitivity and are resilient against a wide range of inferences in spatio-temporal domain. For the first time, a novel CR pruning technique is proposed to significantly improve the delay between successive CR submissions. We carry out an experiment with a real dataset to show its effectiveness for sporadic, frequent, and continuous service use cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信