PDNet:用于息肉图像分割的高级架构

Hanqing Liu, Zhipeng Zhao, Ruichun Tang, Peishun Liu, Yixin Chen, Jianjun Zhang, Jing Jia
{"title":"PDNet:用于息肉图像分割的高级架构","authors":"Hanqing Liu, Zhipeng Zhao, Ruichun Tang, Peishun Liu, Yixin Chen, Jianjun Zhang, Jing Jia","doi":"10.1117/12.2643392","DOIUrl":null,"url":null,"abstract":"In order to improve the segmentation accuracy of polyp image segmentation under colonoscopy, we propose PVT Dual-Upsampling Net (PDNet). PDNet adopts the encoder network based on Transformer as the backbone network for downsampling, and designs a dual upsampling module based on cascaded fusion network and simple connection network to recover the loss of high-level image features caused by the downsampling process, and obtains a high-level semantic feature map with the same resolution as the input image. The multi-feature fusion module is used to aggregate the low-level feature map and high-level semantic feature map. We validate the model on three publicly available datasets, and our experimental evaluations show that the suggested architecture produces good segmentation results on datasets.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDNet: an advanced architecture for polyp image segmentation\",\"authors\":\"Hanqing Liu, Zhipeng Zhao, Ruichun Tang, Peishun Liu, Yixin Chen, Jianjun Zhang, Jing Jia\",\"doi\":\"10.1117/12.2643392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the segmentation accuracy of polyp image segmentation under colonoscopy, we propose PVT Dual-Upsampling Net (PDNet). PDNet adopts the encoder network based on Transformer as the backbone network for downsampling, and designs a dual upsampling module based on cascaded fusion network and simple connection network to recover the loss of high-level image features caused by the downsampling process, and obtains a high-level semantic feature map with the same resolution as the input image. The multi-feature fusion module is used to aggregate the low-level feature map and high-level semantic feature map. We validate the model on three publicly available datasets, and our experimental evaluations show that the suggested architecture produces good segmentation results on datasets.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2643392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2643392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高结肠镜下息肉图像分割的精度,提出了PVT双上采样网络(PDNet)。PDNet采用基于Transformer的编码器网络作为下采样的骨干网络,并设计了基于级联融合网络和简单连接网络的双上采样模块,恢复下采样过程中丢失的高级图像特征,得到与输入图像分辨率相同的高级语义特征图。多特征融合模块用于聚合低级特征图和高级语义特征图。我们在三个公开可用的数据集上验证了该模型,我们的实验评估表明,所建议的架构在数据集上产生了良好的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDNet: an advanced architecture for polyp image segmentation
In order to improve the segmentation accuracy of polyp image segmentation under colonoscopy, we propose PVT Dual-Upsampling Net (PDNet). PDNet adopts the encoder network based on Transformer as the backbone network for downsampling, and designs a dual upsampling module based on cascaded fusion network and simple connection network to recover the loss of high-level image features caused by the downsampling process, and obtains a high-level semantic feature map with the same resolution as the input image. The multi-feature fusion module is used to aggregate the low-level feature map and high-level semantic feature map. We validate the model on three publicly available datasets, and our experimental evaluations show that the suggested architecture produces good segmentation results on datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信