多因素诱发滑坡位移的混合预测模型

Honggao Deng, Shanwen Guan, Yuanfa Ji, Li Zhou, Xiaonan Luo
{"title":"多因素诱发滑坡位移的混合预测模型","authors":"Honggao Deng, Shanwen Guan, Yuanfa Ji, Li Zhou, Xiaonan Luo","doi":"10.1109/ICACI.2019.8778500","DOIUrl":null,"url":null,"abstract":"This paper presents a new hybrid model for land-slide distance prediction. In the model, the cumulative displacement are divided into three parts: the trend term, the period term, and the random noise obtained by the wavelet domain de-nosing method and Hodrick-Prescott (HP) filter. The trend term controlled by the geological conditions is generated using the double exponential smoothing (DES). The period term is predicted by the extreme learning machine (ELM) model, and the dynamic multi-swarm particle swarm optimizer (DMS-PSO) algorithm is applied to obtain optimal parameters of ELM. Case study involving real data collected from the Baishuihe landslide in China is used to verify that the hybrid approach enhances the ability to calculate the period term. Inputs of the proposed model include the period factors extracted from the seasonal triggers and displacement values which enhance excellently the robustness of the prediction model of the period displacement. Extensive experiments are carried out on the Baishuihe landslide dates. Comparing with the predictions obtained by the real original displacement, our model is efficient for predicting the landslide distance of multiple factors induced landslide.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid predicting model for displacement of multifactor-triggered landslides\",\"authors\":\"Honggao Deng, Shanwen Guan, Yuanfa Ji, Li Zhou, Xiaonan Luo\",\"doi\":\"10.1109/ICACI.2019.8778500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new hybrid model for land-slide distance prediction. In the model, the cumulative displacement are divided into three parts: the trend term, the period term, and the random noise obtained by the wavelet domain de-nosing method and Hodrick-Prescott (HP) filter. The trend term controlled by the geological conditions is generated using the double exponential smoothing (DES). The period term is predicted by the extreme learning machine (ELM) model, and the dynamic multi-swarm particle swarm optimizer (DMS-PSO) algorithm is applied to obtain optimal parameters of ELM. Case study involving real data collected from the Baishuihe landslide in China is used to verify that the hybrid approach enhances the ability to calculate the period term. Inputs of the proposed model include the period factors extracted from the seasonal triggers and displacement values which enhance excellently the robustness of the prediction model of the period displacement. Extensive experiments are carried out on the Baishuihe landslide dates. Comparing with the predictions obtained by the real original displacement, our model is efficient for predicting the landslide distance of multiple factors induced landslide.\",\"PeriodicalId\":213368,\"journal\":{\"name\":\"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2019.8778500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的滑坡距离预测混合模型。在模型中,累积位移被分为趋势项、周期项和小波域去噪法和Hodrick-Prescott (HP)滤波得到的随机噪声三部分。利用双指数平滑法生成受地质条件控制的趋势项。采用极限学习机(ELM)模型对周期进行预测,并采用动态多群粒子群优化算法(DMS-PSO)获得ELM的最优参数。以中国白水河滑坡的实际数据为例,验证了混合方法提高了周期周期的计算能力。该模型的输入包括从季节触发因素和位移值中提取的周期因子,这很好地增强了周期位移预测模型的鲁棒性。对白水河滑坡日期进行了大量的试验研究。与实际原始位移的预测结果相比,该模型能有效地预测多因素诱发滑坡的滑坡距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid predicting model for displacement of multifactor-triggered landslides
This paper presents a new hybrid model for land-slide distance prediction. In the model, the cumulative displacement are divided into three parts: the trend term, the period term, and the random noise obtained by the wavelet domain de-nosing method and Hodrick-Prescott (HP) filter. The trend term controlled by the geological conditions is generated using the double exponential smoothing (DES). The period term is predicted by the extreme learning machine (ELM) model, and the dynamic multi-swarm particle swarm optimizer (DMS-PSO) algorithm is applied to obtain optimal parameters of ELM. Case study involving real data collected from the Baishuihe landslide in China is used to verify that the hybrid approach enhances the ability to calculate the period term. Inputs of the proposed model include the period factors extracted from the seasonal triggers and displacement values which enhance excellently the robustness of the prediction model of the period displacement. Extensive experiments are carried out on the Baishuihe landslide dates. Comparing with the predictions obtained by the real original displacement, our model is efficient for predicting the landslide distance of multiple factors induced landslide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信