最优非高斯噪声抑制的自适应序统计滤波器

M. Fernández
{"title":"最优非高斯噪声抑制的自适应序统计滤波器","authors":"M. Fernández","doi":"10.1109/WNYIPW.2011.6122886","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive Order-Statistic Filter (OSF) that maximizes the gain in image SNR. In particular, this distribution-independent non-linear filter approximates the optimal filter when the noise is not Gaussian (e.g., speckle-type clutter, Gamma noise, etc.). Simulation results quantitatively demonstrate the superior performance of the adaptive OSF over popular linear and non-linear alternatives in the presence of non-Gaussian noise.","PeriodicalId":257464,"journal":{"name":"2011 Western New York Image Processing Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Order-Statistic Filters for optimal non-Gaussian noise suppression\",\"authors\":\"M. Fernández\",\"doi\":\"10.1109/WNYIPW.2011.6122886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive Order-Statistic Filter (OSF) that maximizes the gain in image SNR. In particular, this distribution-independent non-linear filter approximates the optimal filter when the noise is not Gaussian (e.g., speckle-type clutter, Gamma noise, etc.). Simulation results quantitatively demonstrate the superior performance of the adaptive OSF over popular linear and non-linear alternatives in the presence of non-Gaussian noise.\",\"PeriodicalId\":257464,\"journal\":{\"name\":\"2011 Western New York Image Processing Workshop\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2011.6122886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2011.6122886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种使图像信噪比增益最大化的自适应序统计滤波器(OSF)。特别是,这种与分布无关的非线性滤波器在噪声不是高斯的情况下近似于最优滤波器(例如,散斑型杂波,伽马噪声等)。仿真结果定量地证明了自适应OSF在非高斯噪声存在下优于常用的线性和非线性替代方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Order-Statistic Filters for optimal non-Gaussian noise suppression
This paper presents an adaptive Order-Statistic Filter (OSF) that maximizes the gain in image SNR. In particular, this distribution-independent non-linear filter approximates the optimal filter when the noise is not Gaussian (e.g., speckle-type clutter, Gamma noise, etc.). Simulation results quantitatively demonstrate the superior performance of the adaptive OSF over popular linear and non-linear alternatives in the presence of non-Gaussian noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信