{"title":"最优非高斯噪声抑制的自适应序统计滤波器","authors":"M. Fernández","doi":"10.1109/WNYIPW.2011.6122886","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive Order-Statistic Filter (OSF) that maximizes the gain in image SNR. In particular, this distribution-independent non-linear filter approximates the optimal filter when the noise is not Gaussian (e.g., speckle-type clutter, Gamma noise, etc.). Simulation results quantitatively demonstrate the superior performance of the adaptive OSF over popular linear and non-linear alternatives in the presence of non-Gaussian noise.","PeriodicalId":257464,"journal":{"name":"2011 Western New York Image Processing Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Order-Statistic Filters for optimal non-Gaussian noise suppression\",\"authors\":\"M. Fernández\",\"doi\":\"10.1109/WNYIPW.2011.6122886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive Order-Statistic Filter (OSF) that maximizes the gain in image SNR. In particular, this distribution-independent non-linear filter approximates the optimal filter when the noise is not Gaussian (e.g., speckle-type clutter, Gamma noise, etc.). Simulation results quantitatively demonstrate the superior performance of the adaptive OSF over popular linear and non-linear alternatives in the presence of non-Gaussian noise.\",\"PeriodicalId\":257464,\"journal\":{\"name\":\"2011 Western New York Image Processing Workshop\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2011.6122886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2011.6122886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Order-Statistic Filters for optimal non-Gaussian noise suppression
This paper presents an adaptive Order-Statistic Filter (OSF) that maximizes the gain in image SNR. In particular, this distribution-independent non-linear filter approximates the optimal filter when the noise is not Gaussian (e.g., speckle-type clutter, Gamma noise, etc.). Simulation results quantitatively demonstrate the superior performance of the adaptive OSF over popular linear and non-linear alternatives in the presence of non-Gaussian noise.